1
|
He C, Xie J, Fang W, Guo B, Shi Y, Li A, Liu H, Zhu Z, Bao W, Niu X, Wang S, Fu J, Li H, Xie W. Dynamic brain glymphatic changes and cognitive function in COVID-19 recovered patients: a DTI-ALPS prospective cohort study. Front Psychol 2025; 16:1465660. [PMID: 40330302 PMCID: PMC12053492 DOI: 10.3389/fpsyg.2025.1465660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Objective This study aimed to evaluate brain glymphatic function in COVID-19 recovered patients using the non-invasive Diffusion Tensor Imaging-Analysis Along the Perivascular Space (DTI-ALPS) technique. The DTI-ALPS technique was employed to investigate changes in brain glymphatic function in these patients and explore correlations with cognitive function and fatigue. Materials and methods Follow-up assessments were conducted at 1, 3, and 12 months post-recovery. A total of 31 patients completed follow-ups at all three time points, with 30 healthy controls (HCs) for comparison. Results Compared to HCs, COVID-19 recovered patients showed a significant decline in MoCA scores at 3 months post-recovery (p < 0.05), which returned to near-normal levels by 12 months. Mental fatigue, measured by the Fatigue Assessment Scale (FAS), was significantly higher in COVID-19 patients at all follow-up points compared to HCs (p < 0.05). The DTI-ALPS index in both hemispheres showed significant differences at 3 months post-recovery compared to HCs (p < 0.001), indicating increased glymphatic activity. Longitudinal analysis revealed a peak in the DTI-ALPS index at 3 months post-recovery, which then decreased by 12 months. Correlation analysis showed a significant negative correlation between the Bilateral brain hemisphere DTI-ALPS index and MoCA scores (right side: r = -0.373, p = 0.003; left side: r = -0.255, p = 0.047), and a positive correlation with mental fatigue (right side: r = 0.275, p = 0.032; left side: r = 0.317, p = 0.013). Conclusion This study demonstrates dynamic changes in brain glymphatic function in COVID-19 recovered patients, with a peak in activity at 3 months post-recovery. These changes are associated with cognitive function and mental fatigue, suggesting potential targets for addressing neurological symptoms of long COVID. The non-invasive DTI-ALPS technique proves to be a valuable tool for assessing brain glymphatic function in this population.
Collapse
Affiliation(s)
- Chengcheng He
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Jinmei Xie
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Weiwei Fang
- Department of Medical Imaging, Xinyuan Hospital of Yulin, Yulin, China
| | - Baoqin Guo
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Yangyang Shi
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Anan Li
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Hao Liu
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Zhimin Zhu
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Wenrui Bao
- School of Future Technology, Xi’an Jiaotong University, Xi'an, China
| | - Xuan Niu
- School of Future Technology, Xi’an Jiaotong University, Xi'an, China
| | - Shaoyu Wang
- MR Research Collaboration, Siemens Healthineers, Shanghai, China
| | - Juan Fu
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| | - Hua Li
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
- Department of Medical Imaging, The First Hospital Of Yulin, Yulin, China
| | - Wenjuan Xie
- Department of Medical Imaging, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin, China
| |
Collapse
|
2
|
Lee CM, Kim M, Park SW, Kang CK, Choe PG, Kim NJ, Jo HJ, Shin HM, Lee CH, Kim HR, Park WB, Oh MD. Clinical outcomes and immunological features of COVID-19 patients receiving B-cell depletion therapy during the Omicron era. Infect Dis (Lond) 2024; 56:116-127. [PMID: 37916860 DOI: 10.1080/23744235.2023.2276784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Background: The clinical outcomes and immunological features of coronavirus disease 2019 (COVID-19) patients receiving B-cell depletion therapy (BCDT), especially in Omicron variant era, have not been fully elucidated. We aimed to investigate the outcomes and immune responses of COVID-19 patients receiving BCDT during the Omicron period.Methods: We retrospectively compared clinical outcomes between COVID-19 patients treated with BCDT (the BCDT group) and those with the same underlying diseases not treated with BCDT (the non-BCDT group). For immunological analyses, we prospectively enrolled COVID-19 patients receiving BCDT and immunocompetent COVID-19 patients as controls. We measured humoral and cellular immune responses using the enzyme-linked immunosorbent assay and flow cytometry.Results: Severe to critical COVID-19 was more frequent in the BCDT group than in the non-BCDT group (41.9% vs. 28.3%, p = .030). BCDT was an independent risk factor for severe to critical COVID-19 (adjusted odds ratio [aOR] 2.21, 95% confidence interval [CI] 1.21-4.04, p = .010) as well as for COVID-19-related mortality (aOR 4.03, 95% CI 1.17-13.86, p = .027). Immunological analyses revealed that patients receiving BCDT had lower anti-S1 IgG titres and a tendency to higher proportions of activated CD4+ T-cells than the controls.Conclusions: BCDT was associated with worse COVID-19 outcomes in the Omicron period. Humoral immune response impairment and T-cell hyperactivation were the main immunological features of COVID-19 patients treated with BCDT, which may have contributed to the worse outcomes of COVID-19 in this population.
Collapse
Affiliation(s)
- Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy & Cell Biology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Wook Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Jae Jo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy & Cell Biology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Kim IS, Kang CK, Lee SJ, Lee CH, Kim M, Seo C, Kim G, Lee S, Park KS, Chang E, Jung J, Song KH, Choe PG, Park WB, Kim ES, Bin Kim H, Kim NJ, Oh MD, Lee JE, Shin HM, Kim HR. Tracking antigen-specific TCR clonotypes in SARS-CoV-2 infection reveals distinct severity trajectories. J Med Virol 2023; 95:e29199. [PMID: 37916645 DOI: 10.1002/jmv.29199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Despite the importance of antigen-specific T cells in infectious disease, characterizing and tracking clonally amplified T cells during the progression of a patient's symptoms remain unclear. Here, we performed a longitudinal, in-depth single-cell multiomics analysis of samples from asymptomatic, mild, usual severe, and delayed severe patients of SARS-CoV-2 infection. Our in-depth analysis revealed that hyperactive or improper T-cell responses were more aggressive in delayed severe patients. Interestingly, tracking of antigen-specific T-cell receptor (TCR) clonotypes along the developmental trajectory indicated an attenuation in functional T cells upon severity. In addition, increased glycolysis and interleukin-6 signaling in the cytotoxic T cells were markedly distinct in delayed severe patients compared to usual severe patients, particularly in the middle and late stages of infection. Tracking B-cell receptor clonotypes also revealed distinct transitions and somatic hypermutations within B cells across different levels of disease severity. Our results suggest that single-cell TCR clonotype tracking can distinguish the severity of patients through immunological hallmarks, leading to a better understanding of the severity differences in and improving the management of infectious diseases by analyzing the dynamics of immune responses over time.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon, South Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jongtak Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Kang CK, Kim MG, Park SW, Kim YW, Lee CM, Choe PG, Park WB, Kim NJ, Kim M, Lee S, Kim IS, Lee CH, Shin HM, Kim HR, Oh MD. Comparable humoral and cellular immunity against Omicron variant BA.4/5 of once-boosted BA.1/2 convalescents and twice-boosted COVID-19-naïve individuals. J Med Virol 2023; 95:e28558. [PMID: 36755360 DOI: 10.1002/jmv.28558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The fourth vaccination dose confers additional protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with no prior coronavirus disease-19 (COVID-19). However, its immunological benefit against currently circulating BA.4/5 is unclear in individuals who have received a booster shot and been infected with Omicron variant BA.1/2. We analyzed immune responses in whom had been boosted once and did not have COVID-19 (n = 16), boosted once and had COVID-19 when BA.1/2 was dominant in Korea (Hybrid-6M group, n = 27), and boosted twice and did not have COVID-19 (Vx4 group, n = 15). Antibody binding activities against RBDo BA.1 and RBDo BA.4/5 , antigen-specific memory CD4+ and CD8+ T-cell responses against BA.4/5, and B-cell responses against SARS-CoV-2 wild-type did not differ statistically between the Hybrid-6M and Vx4 groups. The humoral and cellular immune responses of the Hybrid-6M group against BA.4/5 were comparable to those of the Vx4 group. Individuals who had been boosted and had an Omicron infection in early 2022 may not have high priority for an additional vaccination.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Gang Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Wook Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik Soo Kim
- Department of Microbiology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.,Convergence Research Center for Dementia, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lee CM, Choe PG, Kang CK, Lee E, Song KH, Bang JH, Kim E, Kim HB, Kim NJ, Kim HR, Kim Y, Lee CH, Shin H, Park SW, Park WB, Oh MD. Low humoral and cellular immune responses early after breakthrough infection may contribute to severe COVID-19. Front Immunol 2023; 14:1106664. [PMID: 37033936 PMCID: PMC10073433 DOI: 10.3389/fimmu.2023.1106664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background Little is known about the immune determinants for severe coronavirus disease 2019 (COVID-19) in individuals vaccinated against severe acute respiratory syndrome coronavirus 2. We therefore attempted to identify differences in humoral and cellular immune responses between patients with non-severe and severe breakthrough COVID-19. Methods We prospectively enrolled hospitalized patients with breakthrough COVID-19 (severe and non-severe groups) and uninfected individuals who were vaccinated at a similar time (control group). Severe cases were defined as those who required oxygen therapy while hospitalized. Enzyme-linked immunosorbent assays and flow cytometry were used to evaluate humoral and cellular immune responses, respectively. Results Anti-S1 IgG titers were significantly lower in the severe group than in the non-severe group within 1 week of symptom onset and higher in the non-severe group than in the control group. Compared with the control group, the cellular immune response tended to be diminished in breakthrough cases, particularly in the severe group. In multivariate analysis, advanced age and low anti-S1 IgG titer were associated with severe breakthrough COVID-19. Conclusions Severe breakthrough COVID-19 might be attributed by low humoral and cellular immune responses early after infection. In the vaccinated population, delayed humoral and cellular immune responses may contribute to severe breakthrough COVID-19.
Collapse
Affiliation(s)
- Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eunyoung Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Hwan Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy & Cell Biology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngju Kim
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Han Lee
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Mu Shin
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- *Correspondence: Hyun Mu Shin, ; Sang-Won Park, ; Wan Beom Park,
| | - Sang-Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- *Correspondence: Hyun Mu Shin, ; Sang-Won Park, ; Wan Beom Park,
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- *Correspondence: Hyun Mu Shin, ; Sang-Won Park, ; Wan Beom Park,
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kim J, Jeong J, Lee CM, Lee DW, Kang CK, Choe PG, Kim NJ, Oh MD, Lee CH, Park WB, Lee KH, Im SA. Prospective longitudinal analysis of antibody response after standard and booster doses of SARS-COV2 vaccination in patients with early breast cancer. Front Immunol 2022; 13:1028102. [DOI: 10.3389/fimmu.2022.1028102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants brought waves of pandemics with breakthrough infections in vaccinated individuals. We analyzed the antibody responses after primary and booster vaccination in healthy controls (HC) and patients with early breast cancer (BC).MethodsIn this prospective longitudinal cohort study, the binding activity of serum antibody level against spike proteins and antigens of SARS-CoV-2 variants was measured within 21 days after each vaccination in the BC group and HC group.ResultsAll participants, 40 in the BC and 20 in the HC group, had increased antibody response after vaccination. BC group, however, had weaker humoral responses than the HC group (IgG: 1.5, 2.3, 2.5-folds in BC vs. 1.9, 3.6, 4.0-folds in HC after each dose; IgA: 2.1, 3.0, 3.6-folds in BC vs. 4.2, 10.4, 5.2-folds in HC after each dose, respectively). Those under concurrent cytotoxic chemotherapy had weaker antibody response than the non-cytotoxic treatment group and HC. Adjunct use of steroids and age were not significant risk factors. The levels of binding antibody against the Delta and the Omicron (BA1) variants were lower than the wild-type, especially in BC.ConclusionIn the waves of new sub-variants, our study suggests that an additional dose of vaccinations should be recommended according to the anti-cancer treatment modality in patients with BC who had received booster vaccination.
Collapse
|
7
|
Effect of Previous COVID-19 Vaccination on Humoral Immunity 3 Months after SARS-CoV-2 Omicron Infection and Booster Effect of a Fourth COVID-19 Vaccination 2 Months after SARS-CoV-2 Omicron Infection. Viruses 2022; 14:v14112458. [PMID: 36366556 PMCID: PMC9695529 DOI: 10.3390/v14112458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we aimed to determine the effect of COVID-19 vaccination on 3-month immune response and durability after natural infection by the Omicron variant and to assess the immune response to a fourth dose of COVID-19 vaccination in patients with prior natural infection with the Omicron variant. Overall, 86 patients aged ≥60 years with different vaccination histories and 39 health care workers (HCWs) vaccinated thrice before Omicron infection were enrolled. The sVNT50 titer was significantly lower in patients with incomplete vaccination before SARS-CoV-2 infection with the S clade (p < 0.001), Delta variant (p < 0.001), or Omicron variant (p = 0.003) than in those vaccinated thrice. The sVNT results against the Omicron variant did not differ significantly in patients aged ≥60 years (p = 0.49) and HCWs (p = 0.17), regardless of the recipient receiving the fourth dose 2 months after COVID-19. Incomplete COVID-19 vaccination before Omicron infection for individuals aged ≥60 years conferred limited protection against homologous and heterologous virus strains, whereas two or three doses of the vaccine provided cross-variant humoral immunity against Omicron infection for at least 3 months. However, a fourth dose 2 months after Omicron infection did not enhance immunity against the homologous strain. A future strategy using the bivalent Omicron-containing booster vaccine with appropriate timing will be crucial.
Collapse
|
8
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Immunity after COVID-19 Recovery and Vaccination: Similarities and Differences. Vaccines (Basel) 2022; 10:vaccines10071068. [PMID: 35891232 PMCID: PMC9322013 DOI: 10.3390/vaccines10071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with a robust immune response. The development of systemic inflammation leads to a hyperinflammatory state due to cytokine release syndrome during severe COVID-19. The emergence of many new SARS-CoV-2 variants across the world deteriorates the protective antiviral immunity induced after infection or vaccination. The innate immune response to SARS-CoV-2 is crucial for determining the fate of COVID-19 symptomatology. T cell-mediated immunity is the main factor of the antiviral immune response; moreover, SARS-CoV-2 infection initiates a rapid B-cell response. In this paper, we present the current state of knowledge on immunity after COVID-19 infection and vaccination. We discuss the mechanisms of immune response to various types of vaccines (nucleoside-modified, adenovirus-vectored, inactivated virus vaccines and recombinant protein adjuvanted formulations). This includes specific aspects of vaccination in selected patient populations with altered immune activity (the elderly, children, pregnant women, solid organ transplant recipients, patients with systemic rheumatic diseases or malignancies). We also present diagnostic and research tools available to study the anti-SARS-CoV-2 cellular and humoral immune responses.
Collapse
|
10
|
Ortega MA, García-Montero C, Fraile-Martinez O, Colet P, Baizhaxynova A, Mukhtarova K, Alvarez-Mon M, Kanatova K, Asúnsolo A, Sarría-Santamera A. Recapping the Features of SARS-CoV-2 and Its Main Variants: Status and Future Paths. J Pers Med 2022; 12:995. [PMID: 35743779 PMCID: PMC9225183 DOI: 10.3390/jpm12060995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Over the two years that we have been experiencing the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, our challenges have been the race to develop vaccines and the difficulties in fighting against new variants due to the rapid ability of the virus to evolve. In this sense, different organizations have identified and classified the different variants that have been emerging, distinguishing between variants of concern (VOC), variants of interest (VOI), or variants under monitoring (VUM). The following review aims to describe the latest updates focusing on VOC and already de-escalated variants, as well as to describe the impact these have had on the global situation. Understanding the intrinsic properties of SARS-CoV-2 and its interaction with the immune system and vaccination is essential to make out the underlying mechanisms that have led to the appearance of these variants, helping to determine the next steps for better public management of this pandemic.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Paolo Colet
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Ardak Baizhaxynova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Kymbat Mukhtarova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Kaznagul Kanatova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Antonio Sarría-Santamera
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| |
Collapse
|
11
|
Kang CK, Shin HM, Choe PG, Park J, Hong J, Seo JS, Lee YH, Chang E, Kim NJ, Kim M, Kim YW, Kim HR, Lee CH, Seo JY, Park WB, Oh MD. Broad humoral and cellular immunity elicited by one-dose mRNA vaccination 18 months after SARS-CoV-2 infection. BMC Med 2022; 20:181. [PMID: 35508998 PMCID: PMC9067342 DOI: 10.1186/s12916-022-02383-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Practical guidance is needed regarding the vaccination of coronavirus disease 2019 (COVID-19) convalescent individuals in resource-limited countries. It includes the number of vaccine doses that should be given to unvaccinated patients who experienced COVID-19 early in the pandemic. METHODS We recruited COVID-19 convalescent individuals who received one or two doses of an mRNA vaccine within 6 or around 18 months after a diagnosis of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Their samples were assessed for IgG-binding or neutralizing activity and cell-mediated immune responses against SARS-CoV-2 wild-type and variants of concern. RESULTS A total of 43 COVID-19 convalescent individuals were analyzed in the present study. The results showed that humoral and cellular immune responses against SARS-CoV-2 wild-type and variants of concern, including the Omicron variant, were comparable among patients vaccinated within 6 versus around 18 months. A second dose of vaccine did not significantly increase immune responses. CONCLUSION One dose of mRNA vaccine should be considered sufficient to elicit a broad immune response even around 18 months after a COVID-19 diagnosis.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jiyoung Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jisu Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jung Seon Seo
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yung Hie Lee
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Internal Medicine, Seoul Asan Medical Center, Seoul, 05505, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yong-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 08030, South Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|