1
|
Carri I, Schwab E, Trivino JC, von Euw EM, Nielsen M, Mordoh J, Barrio MM. VACCIMEL, an allogeneic melanoma vaccine, efficiently triggers T cell immune responses against neoantigens and alloantigens, as well as against tumor-associated antigens. Front Immunol 2025; 15:1496204. [PMID: 39840067 PMCID: PMC11747570 DOI: 10.3389/fimmu.2024.1496204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored. To study these immunogens, we performed whole-exome sequencing of paired tumor and germinal samples from four vaccinated patients and the vaccine cells. VACCIMEL variants were called by comparing the vaccine and the patient's exomes, and non-synonymous coding variants were used to predict T cell epitopes. Candidates were ranked based on their mRNA expression in VACCIMEL, predicted peptide-HLA (pHLA) presentation, and pHLA stability. Then, the immune responses to prioritized epitope candidates were tested using IFNγ ELISpot assays on vaccinated patients' PBMC samples. The comparison of the vaccine with the patients' germinal exomes revealed on average 9481 coding non-synonymous variants, suggesting that VACCIMEL offers a high number of potential antigens. Between 0,05 and 0,2% of these variants were also found in the tumors of three vaccinated patients; however, one patient with a high tumor mutational burden (TMB) shared 19,5% somatic variants. The assessment of T cell responses showed that vaccinated patients mounted highly diverse responses against VACCIMEL peptides. Notably, effector T cells targeting the patient's tumor antigens, comprising neoantigens and TAA, were found in higher frequencies than T cells targeting VACCIMEL-exclusive antigens. On the other hand, we observed that the immunogenic epitopes are not conserved across patients, despite sharing HLA and that immune responses fluctuate over time. Finally, a positive correlation between VACCIMEL antigen expression and the intensity of the T cell responses was found. Our results demonstrate that the immune system simultaneously responds to a high number of antigens, either vaccinal or private, proving that immune responses against epitopes not expressed in the patient's tumors were not detrimental to the immune recognition of neoantigens and TAA.
Collapse
Affiliation(s)
- Ibel Carri
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Erika Schwab
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Erika M. von Euw
- Translational Oncology Research Labs, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - José Mordoh
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
4
|
Oladejo M, Tijani AO, Puri A, Chablani L. Adjuvants in cutaneous vaccination: A comprehensive analysis. J Control Release 2024; 369:475-492. [PMID: 38569943 DOI: 10.1016/j.jconrel.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Skin is the body's largest organ and serves as a protective barrier from physical, thermal, and mechanical environmental challenges. Alongside, the skin hosts key immune system players, such as the professional antigen-presenting cells (APCs) like the Langerhans cells in the epidermis and circulating macrophages in the blood. Further, the literature supports that the APCs can be activated by antigen or vaccine delivery via multiple routes of administration through the skin. Once activated, the stimulated APCs drain to the associated lymph nodes and gain access to the lymphatic system. This further allows the APCs to engage with the adaptive immune system and activate cellular and humoral immune responses. Thus, vaccine delivery via skin offers advantages such as reliable antigen delivery, superior immunogenicity, and convenient delivery. Several preclinical and clinical studies have demonstrated the significance of vaccine delivery using various routes of administration via skin. However, such vaccines often employ adjuvant/(s), along with the antigen of interest. Adjuvants augment the immune response to a vaccine antigen and improve the therapeutic efficacy. Due to these reasons, adjuvants have been successfully used with infectious disease vaccines, cancer immunotherapy, and immune-mediated diseases. To capture these developments, this review will summarize preclinical and clinical study results of vaccine delivery via skin in the presence of adjuvants. A focused discussion regarding the FDA-approved adjuvants will address the experiences of using such adjuvant-containing vaccines. In addition, the challenges and regulatory concerns with these adjuvants will be discussed. Finally, the review will share the prospects of adjuvant-containing vaccines delivered via skin.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| | - Lipika Chablani
- Wegmans School of Pharmacy, St. John Fisher University, 3690 East Ave, Rochester, NY 14618, USA.
| |
Collapse
|
5
|
Mordoh J, Schwab E, Bravo AI, Aris M, Barrio MM. Vaccimel immunization is associated with enhanced response to treatment with anti-PD-1 monoclonal antibodies in cutaneous melanoma patients - a case reports study. Front Immunol 2024; 15:1354710. [PMID: 38726010 PMCID: PMC11079628 DOI: 10.3389/fimmu.2024.1354710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.
Collapse
Affiliation(s)
- José Mordoh
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
6
|
Gupta S, Yadav S, Kumar P. Efficacy of Bacillus Calmette-Guérin in Cancer Prevention and Its Putative Mechanisms. J Cancer Prev 2024; 29:6-15. [PMID: 38567111 PMCID: PMC10982520 DOI: 10.15430/jcp.23.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated strain of Mycobacterium bovis. Although it was developed as a prophylactic vaccine against tuberculosis (TB), researchers have also evaluated it for preventing cancer development or progression. These studies were inspired by the available data regarding the protective effects of microbial infection against cancers and an inverse relationship between TB and cancer mortality. Initial studies demonstrated the efficacy of BCG in preventing leukemia, melanoma and a few other cancers. However, mixed results were observed in later studies. Importantly, these studies have led to the successful use of BCG in the tertiary prevention of non-muscle invasive bladder cancer, wherein BCG therapy has been found to be more effective than chemotherapy. Moreover, in a recently published 60-year follow-up study, childhood BCG vaccination has been found to significantly prevent lung cancer development. In the present manuscript, we reviewed the studies evaluating the efficacy of BCG in cancer prevention and discussed its putative mechanisms. Also, we sought to explain the mixed results of BCG efficacy in preventing different cancers.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Preventive Oncology (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Yadav
- Department of Preventive Oncology (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Kumar
- Department of Preventive Oncology (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol 2024; 193:104198. [PMID: 37949152 DOI: 10.1016/j.critrevonc.2023.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Therapeutic cancer vaccines have shown promising efficacy in helping immunotherapy for cancer patients, but the systematic characterization of the clinical application and the method for improving efficacy is lacking. Here, we mainly summarize the classification of therapeutic cancer vaccines, including protein vaccines, nucleic acid vaccines, cellular vaccines and anti-idiotypic antibody vaccines, and subdivide the above vaccines according to different types and delivery forms. Additionally, we outline the clinical efficacy and safety of vaccines, as well as the combination strategies of therapeutic cancer vaccines with other therapies. This review will provide a detailed overview and rationale for the future clinical application and development of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
8
|
Pérez-Baños A, Gleisner MA, Flores I, Pereda C, Navarrete M, Araya JP, Navarro G, Quezada-Monrás C, Tittarelli A, Salazar-Onfray F. Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. Br J Cancer 2023; 129:572-585. [PMID: 37355722 PMCID: PMC10421921 DOI: 10.1038/s41416-023-02327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.
Collapse
Affiliation(s)
- Amarilis Pérez-Baños
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Araya
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Giovanna Navarro
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Claudia Quezada-Monrás
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile.
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute and Section for Infectious Diseases, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
9
|
Bravo AI, Aris M, Panouillot M, Porto M, Dieu-Nosjean MC, Teillaud JL, Barrio MM, Mordoh J. HEV-associated dendritic cells are observed in metastatic tumor-draining lymph nodes of cutaneous melanoma patients with longer distant metastasis-free survival after adjuvant immunotherapy. Front Immunol 2023; 14:1231734. [PMID: 37691949 PMCID: PMC10485604 DOI: 10.3389/fimmu.2023.1231734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Tissue biomarkers that aid in identifying cutaneous melanoma (CM) patients who will benefit from adjuvant immunotherapy are of crucial interest. Metastatic tumor-draining lymph nodes (mTDLN) are the first encounter site between the metastatic CM cells and an organized immune structure. Therefore, their study may reveal mechanisms that could influence patients´ outcomes. Methods Twenty-nine stage-III CM patients enrolled in clinical trials to study the vaccine VACCIMEL were included in this retrospective study. After radical mTDLN dissection, patients were treated with VACCIMEL (n=22) or IFNα-2b (n=6), unless rapid progression (n=1). Distant Metastasis-Free Survival (DMFS) was selected as an end-point. Two cohorts of patients were selected: one with a good outcome (GO) (n=17; median DMFS 130.0 months), and another with a bad outcome (BO) (n=12; median DMFS 8.5 months). We analyzed by immunohistochemistry and immunofluorescence the expression of relevant biomarkers to tumor-cell biology and immune cells and structures in mTDLN, both in the tumor and peritumoral areas. Results In BO patients, highly replicating Ki-67+ tumor cells, low tumor HLA-I expression and abundant FoxP3+ lymphocytes were found (p=0.037; p=0.056 and p=0.021). In GO patients, the most favorable biomarkers for prolonged DMFS were the abundance of peri- and intra-tumoral CD11c+ cells (p=0.0002 and p=0.001), peri-tumoral DC-LAMP+ dendritic cells (DCs) (p=0.001), and PNAd+ High Endothelial Venules (HEVs) (p=0.004). Most strikingly, we describe in GO patients a peculiar, heterogeneous structure that we named FAPS (Favoring Antigen-Presenting Structure), a triad composed of DC, HEV and CD62L+ naïve lymphocytes, whose postulated role would be to favor tumor antigen (Ag) priming of incoming naïve lymphocytes. We also found in GO patients a preferential tumor infiltration of CD8+ and CD20+ lymphocytes (p=0.004 and p=0.027), as well as peritumoral CD20+ aggregates, with no CD21+ follicular dendritic cells detected (p=0.023). Heterogeneous infiltration with CD64+CD68-CD163-, CD64+CD68+CD163- and CD64+CD68+CD163+ macrophages were observed in both cohorts. Discussion The analysis of mTDLN in GO and BO patients revealed marked differences. This work highlights the importance of analyzing resected mTDLN from CM patients and suggests a correlation between tumor and immune characteristics that may be associated with a spontaneous or vaccine-induced long DMFS. These results should be confirmed in prospective studies.
Collapse
Affiliation(s)
- Alicia Inés Bravo
- Laboratorio de Cancerología, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Unidad de Inmunopatología, Hospital HIGA Eva Perón, Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Marylou Panouillot
- Sorbonne University, Faculty of Medicine, UMRS 1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Inserm U.1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Martina Porto
- Laboratorio de Cancerología, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University, Faculty of Medicine, UMRS 1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Inserm U.1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Jean-Luc Teillaud
- Sorbonne University, Faculty of Medicine, UMRS 1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Inserm U.1135, Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre d’Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - José Mordoh
- Laboratorio de Cancerología, Fundación Instituto Leloir, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| |
Collapse
|
10
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|