1
|
Martínez D, Garrido M, Ponce C, Zumelzu Y, Coronado J, Santibañez N, Quilapi AM, Vargas-Lagos C, Pontigo JP, Oyarzún-Salazar R, Godoy M, Enríquez R, Muñoz JL, Vargas-Chacoff L, Romero A. Comparative analysis of the stress and immune responses in Atlantic salmon (Salmo salar) inoculated with live and inactivated Piscirickettsia salmonis. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110111. [PMID: 39753155 DOI: 10.1016/j.fsi.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
Piscirickettsiosis causes the highest mortality in Atlantic salmon (Salmo salar) farming, and prophylactic treatment has not provided complete protection to date. In this study, we analyzed the immune and metabolic responses of Atlantic salmon inoculated with live and inactivated Piscirickettsia salmonis, monitoring plasma markers related to immune and stress responses. The fish were inoculated with inactivated P. salmonis, live P. salmonis, and culture medium (as control group). Blood and head-kidney samples were collected on days 3, 7, and 14 post-inoculations (dpi). Glucose and lactate levels did not show statistical differences, while cortisol levels increased from day 3 to day 14 in fish inoculated with live P. salmonis and only at 7 dpi in those inoculated with inactivated P. salmonis. Furthermore, anti-P. salmonis IgM-type immunoglobulins increased up to 14 dpi in fish inoculated with live P. salmonis but showed no change in those inoculated with inactivated P. salmonis. Meanwhile, immune markers involved in type I responses (tnfα-1, ifnγ, and cd8β) and regulatory responses (il10, tgfβ-1, and cd4-1) displayed differences between fish inoculated with live and inactivated P. salmonis. In fish inoculated with live P. salmonis, there was a clear pattern of increase at both 3 and 14 dpi, while those inoculated with inactivated P. salmonis showed a greater increase at 3 dpi. Our findings suggest that the nature of antigen may influence humoral immunity (anti-P. salmonis IgM) and the gene expression of markers involved in type I and regulatory immune responses in Atlantic salmon.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile.
| | - Monserrat Garrido
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Carlos Ponce
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Yeraldine Zumelzu
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Jose Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ana María Quilapi
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Carolina Vargas-Lagos
- Carrera de Tecnología Médica, Departamento de Salud, Universidad de los Lagos, Osorno, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile
| | - Ricardo Enríquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i∼mar, Universidad de los Lagos, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
2
|
Ortiz D, Guajardo F, Talamilla-Espinoza A, Vera-Tamargo F, Pérez-Valenzuela J, Mejías M, Pino-Quezada L, Galdames-Contreras F, Mandakovic D, Wacyk J, Urra FA, Pulgar R. Metabolic energetic adaptation of Atlantic salmon phagocytes to changes in carbon sources and exposure to PAMPs. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109926. [PMID: 39370021 DOI: 10.1016/j.fsi.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Phagocytic cells are pivotal for host homeostasis and infection defense, necessitating metabolic adaptations in glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). While mammalian phagocytes shift towards glycolysis and glutaminolysis during polarization, research on fish phagocyte metabolic reprogramming is limited. To address this, the Atlantic salmon phagocytic cell line, SHK-1, serves as a valuable model. Using the Seahorse XFe96 Flux Analyzer, this study compares SHK-1 bioenergetics under glucose-restricted (L-15 medium) and glucose-supplemented (PM) conditions, providing insights into metabolic characteristics and responses to Piscirickettsia salmonis bacterium Pathogen-associated molecular patterns (PAMPs). A standardized protocol for the study of real-time changes in the metabolism study of SHK-1 in PM and L-15 media, determining oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) is shown. Exhibiting metabolic adaptations, SHK-1 cells in the PM medium have higher basal and maximal OCR and spare capacity (SRC), while those grown in the L-15 medium favor OXPHOS, showing minimal glycolytic function. Despite metabolic differences, intracellular ATP levels are comparable, highlighting the metabolic plasticity and adaptability of SHK-1 cells to various carbon sources. Exposure to PAMPs from Piscirickettsia salmonis induces a metabolic shift, increasing glycolysis and OXPHOS, influencing ATP, lactate, glutamine, and glutamate levels. These findings highlight the role of mitochondrial bioenergetics and metabolic plasticity in salmon phagocytes, offering novel nutritional strategies for host-pathogen interventions based on energy metabolism.
Collapse
Affiliation(s)
- Daniela Ortiz
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Laboratory of Animal Nutrition, Faculty of Agronomy, University of Chile, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Francisco Guajardo
- Laboratory of Metabolic Plasticity and Bioenergetics, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, PO Box 7, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 7810000, Chile
| | - Andrea Talamilla-Espinoza
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Francisca Vera-Tamargo
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Javiera Pérez-Valenzuela
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Madelaine Mejías
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Lucas Pino-Quezada
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Felipe Galdames-Contreras
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Jurij Wacyk
- Laboratory of Animal Nutrition, Faculty of Agronomy, University of Chile, Avenida Santa Rosa 11315, La Pintana, Santiago, 8820808, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Independencia 1027, PO Box 7, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 7810000, Chile.
| | - Rodrigo Pulgar
- Laboratory of Genetics and Genomics and Biological Interactions, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, 7830490, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Pérez-Stuardo D, Frazão M, Ibaceta V, Brianson B, Sánchez E, Rivas-Pardo JA, Vallejos-Vidal E, Reyes-López FE, Toro-Ascuy D, Vidal EA, Reyes-Cerpa S. KLF17 is an important regulatory component of the transcriptomic response of Atlantic salmon macrophages to Piscirickettsia salmonis infection. Front Immunol 2023; 14:1264599. [PMID: 38162669 PMCID: PMC10755876 DOI: 10.3389/fimmu.2023.1264599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Piscirickettsia salmonis is the most important health problem facing Chilean Aquaculture. Previous reports suggest that P. salmonis can survive in salmonid macrophages by interfering with the host immune response. However, the relevant aspects of the molecular pathogenesis of P. salmonis have been poorly characterized. In this work, we evaluated the transcriptomic changes in macrophage-like cell line SHK-1 infected with P. salmonis at 24- and 48-hours post-infection (hpi) and generated network models of the macrophage response to the infection using co-expression analysis and regulatory transcription factor-target gene information. Transcriptomic analysis showed that 635 genes were differentially expressed after 24- and/or 48-hpi. The pattern of expression of these genes was analyzed by weighted co-expression network analysis (WGCNA), which classified genes into 4 modules of expression, comprising early responses to the bacterium. Induced genes included genes involved in metabolism and cell differentiation, intracellular transportation, and cytoskeleton reorganization, while repressed genes included genes involved in extracellular matrix organization and RNA metabolism. To understand how these expression changes are orchestrated and to pinpoint relevant transcription factors (TFs) controlling the response, we established a curated database of TF-target gene regulatory interactions in Salmo salar, SalSaDB. Using this resource, together with co-expression module data, we generated infection context-specific networks that were analyzed to determine highly connected TF nodes. We found that the most connected TF of the 24- and 48-hpi response networks is KLF17, an ortholog of the KLF4 TF involved in the polarization of macrophages to an M2-phenotype in mammals. Interestingly, while KLF17 is induced by P. salmonis infection, other TFs, such as NOTCH3 and NFATC1, whose orthologs in mammals are related to M1-like macrophages, are repressed. In sum, our results suggest the induction of early regulatory events associated with an M2-like phenotype of macrophages that drives effectors related to the lysosome, RNA metabolism, cytoskeleton organization, and extracellular matrix remodeling. Moreover, the M1-like response seems delayed in generating an effective response, suggesting a polarization towards M2-like macrophages that allows the survival of P. salmonis. This work also contributes to SalSaDB, a curated database of TF-target gene interactions that is freely available for the Atlantic salmon community.
Collapse
Affiliation(s)
- Diego Pérez-Stuardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
| | - Mateus Frazão
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Valentina Ibaceta
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Bernardo Brianson
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Evelyn Sánchez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - J. Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago, Chile
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elena A. Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo (ANID) Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
4
|
Acevedo W, Morán-Figueroa R, Vargas-Chacoff L, Morera FJ, Pontigo JP. Revealing the Salmo salar NLRP3 Inflammasome: Insights from Structural Modeling and Transcriptome Analysis. Int J Mol Sci 2023; 24:14556. [PMID: 37834004 PMCID: PMC10572965 DOI: 10.3390/ijms241914556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The NLRP3, one of the most heavily studied inflammasome-related proteins in mammals, remains inadequately characterized in Atlantic salmon (Salmo salar), despite the significant commercial importance of this salmonid. The NLRP3 inflammasome is composed of the NLRP3 protein, which is associated with procaspase-1 via an adapter molecule known as ASC. This work aims to characterize the Salmo salar NLRP3 inflammasome through in silico structural modeling, functional transcript expression determination in the SHK-1 cell line in vitro, and a transcriptome analysis on Atlantic salmon. The molecular docking results suggested a similar arrangement of the ternary complex between NLRP3, ASC, and caspase-1 in both the Atlantic salmon and the mammalian NLRP3 inflammasomes. Moreover, the expression results confirmed the functionality of the SsNLRP3 inflammasome in the SHK-1 cells, as evidenced by the lipopolysaccharide-induced increase in the transcription of genes involved in inflammasome activation, including ASC and NLRP3. Additionally, the transcriptome results revealed that most of the inflammasome-related genes, including ASC, NLRP3, and caspase-1, were down-regulated in the Atlantic salmon following its adaptation to seawater (also known as parr-smolt transformation). This is correlated with a temporary detrimental effected on the immune system. Collectively, these findings offer novel insights into the evolutionarily conserved role of NLRP3.
Collapse
Affiliation(s)
- Waldo Acevedo
- Biological Chemistry Laboratory, Institute of Chemistry, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso 2373223, Chile;
| | - Rodrigo Morán-Figueroa
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Luis Vargas-Chacoff
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- IDEAL Research Center for Dynamics of High Latitude Marine Ecosystems, Universidad Austral de Chile, Valdivia 5110566, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia 5090000, Chile
- Integrative Biology Group, Valdivia 5110566, Chile
| | - Francisco J. Morera
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Integrative Biology Group, Valdivia 5110566, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional de Investigación, Facultad Ciencias de la Naturaleza, Medicina Veterinaria, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5090000, Chile
| |
Collapse
|
5
|
Dai M, Zhang Y, Jiao Y, Deng Y, Du X, Yang C. Immunomodulatory effects of one novel microRNA miR-63 in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2023; 140:109002. [PMID: 37586600 DOI: 10.1016/j.fsi.2023.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Novel microRNA miR-63 (novel-miR-63) from pearl oyster Pinctada fucata martensii (Pm-novel-miR-63) is a species-specific miRNA. Our previous research has shown that the expression of Pm-novel-miR-63 was significantly downregulated at 24 h after nucleus transplantation. In this study, we analyzed the function and regulatory role of Pm-novel-miR-63 in the immune response of pearl oysters. The results showed that Pm-novel-miR-63 expression increased after the stimulation of pathogen associated molecular patterns at 6-12 h, and the activity of immune and antioxidant enzymes in the serum decreased after Pm-novel-miR-63 overexpression. Transcriptome analysis revealed that Pm-novel-miR-63 participated in regulating transplantation immunity through the Notch and mRNA surveillance signaling pathways. Target prediction and dual luciferase analysis revealed that Pm-GDP-FucTP, Pm-CysLTR2, and Pm-RLR were the target genes of Pm-novel-miR-63. These results suggested that Pm-novel-miR-63 participated in regulating the immune response in pearl oysters and can serve as a new interference target to reasonably control excessive immune rejection in pearl culture.
Collapse
Affiliation(s)
- Meiqi Dai
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
6
|
Oliver C, Coronado JL, Martínez D, Kashulin-Bekkelund A, Lagos LX, Ciani E, Sanhueza-Oyarzún C, Mancilla-Nova A, Enríquez R, Winther-Larsen HC, Romero A. Outer membrane vesicles from Piscirickettsia salmonis induce the expression of inflammatory genes and production of IgM in Atlantic salmon Salmo salar. FISH & SHELLFISH IMMUNOLOGY 2023:108887. [PMID: 37290611 DOI: 10.1016/j.fsi.2023.108887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 μg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 μg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-β were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 μg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.
Collapse
Affiliation(s)
- Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile.
| | - José Leonardo Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | | | - Leidy X Lagos
- Section of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0315, Oslo, Norway
| | - Elia Ciani
- Section of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0315, Oslo, Norway
| | - Constanza Sanhueza-Oyarzún
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Mancilla-Nova
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Enríquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Hanne C Winther-Larsen
- Section of Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0315, Oslo, Norway.
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile.
| |
Collapse
|
7
|
Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 2023; 44:217-230. [PMID: 36709082 DOI: 10.1016/j.it.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Martínez D, Oyarzún-Salazar R, Quilapi AM, Coronado J, Enriquez R, Vargas-Lagos C, Oliver C, Santibañez N, Godoy M, Muñoz JL, Vargas-Chacoff L, Romero A. Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon ( Salmo salar). Front Immunol 2023; 14:1187209. [PMID: 37187753 PMCID: PMC10175622 DOI: 10.3389/fimmu.2023.1187209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Ana María Quilapi
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - José Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Enriquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Vargas-Lagos
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Marcos Godoy
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile
| | - José Luis Muñoz
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), University Austral of Chile, Valdivia, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| |
Collapse
|