1
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Wang Q, Yang S, Zhang X, Zhang S, Chen L, Wang W, Chen N, Yan J. Inflammasomes in neurodegenerative diseases. Transl Neurodegener 2024; 13:65. [PMID: 39710713 PMCID: PMC11665095 DOI: 10.1186/s40035-024-00459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Inflammasomes represent a crucial component of the innate immune system, which respond to threats by recognizing different molecules. These are known as pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). In neurodegenerative diseases and neuroinflammation, the accumulation of misfolded proteins, such as beta-amyloid and alpha-synuclein, can lead to inflammasome activation, resulting in the release of interleukin (IL)-1β and IL-18. This activation also induces pyroptosis, the release of inflammatory mediators, and exacerbates neuroinflammation. Increasing evidence suggests that inflammasomes play a pivotal role in neurodegenerative diseases. Therefore, elucidating and investigating the activation and regulation of inflammasomes in these diseases is of paramount importance. This review is primarily focused on evidence indicating that inflammasomes are activated through the canonical pathway in these diseases. Inflammasomes as potential targets for treating neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Qianchen Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Zhang
- China Three Gorges University College of Medicine and Health Sciences, Yichang, 443002, China
| | - Liping Chen
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wanxue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Lechkova B, Benbassat N, Karcheva-Bahchevanska D, Ivanov K, Peychev L, Peychev Z, Dyankov S, Georgieva-Dimova Y, Kraev K, Ivanova S. A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations. Molecules 2024; 29:1969. [PMID: 38731460 PMCID: PMC11085318 DOI: 10.3390/molecules29091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in agriculture. Investigations on the essential oil (EO) have indicated antimicrobial, antioxidant, and repellent activity. The present study aimed to evaluate the chemical composition of Bulgarian T. parthenium essential oil from two different regions, to compare the results to those reported previously in the literature, and to point out some of its future applications. The essential oils of the air-dried flowering aerial parts were obtained by hydrodistillation using a Clevenger-type apparatus. The chemical composition was evaluated using gas chromatography with mass spectrometry (GC-MS). It was established that the oxygenated monoterpenes were the predominant terpene class, followed by the monoterpene hydrocarbons. Significant qualitative and quantitative differences between both samples were revealed. Camphor (50.90%), camphene (16.12%), and bornyl acetate (6.05%) were the major constituents in the feverfew EO from the western Rhodope Mountains, while in the EO from the central Balkan mountains camphor (45.54%), trans-chrysanthenyl acetate (13.87%), and camphene (13.03%) were the most abundant components.
Collapse
Affiliation(s)
- Borislava Lechkova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Zhivko Peychev
- Department of Medical Informatics, Biostatistics and E-Learning, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stanislav Dyankov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yoana Georgieva-Dimova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
4
|
LINC00632 relates to milder Th1/Th2 imbalance, attenuated nasal symptoms, and better response to therapy in allergic rhinitis patients. Allergol Immunopathol (Madr) 2023; 51:120-125. [PMID: 36916096 DOI: 10.15586/aei.v51i2.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 03/08/2023]
Abstract
OBJECTIVE Long intergenic noncoding RNA 00632 (LINC00632) regulates nasal inflammation and CD4+ T cell differentiation into T helper (Th) 2 cells in allergic rhinitis (AR). This study aimed to explore the relationship between LINC00632 and Th1/Th2 balance, and the clinical value of LINC00632 in AR patients. METHODS In total, 120 AR patients, 20 non-atopic obstructive snoring patients as disease controls (DCs), and 20 healthy controls (HCs) were recruited. Their LINC00632 expressions in peripheral blood mononuclear cells were detected by RT-qPCR. RESULTS LINC00632 expression was declined in AR patients compared with DCs and HCs (both P ˂ 0.001). Moreover, LINC00632 could distinguish AR patients from DCs with an area under curve (AUC) of 0.795 (95% confidence interval [CI]: 0.701-0.889), and from HCs with an AUC of 0.895 (95%CI: 0.831-0.960). LINC00632 was positively related to Th1 cells (P = 0.037) and Th1/Th2 axis (P ˂ 0.001) in AR patients. In addition, LINC00632 was inversely associated with Th2 cells (P ˂ 0.001) and interleukin (IL)-4 (P = 0.010) in AR patients. Besides, LINC00632 was negatively related to rhinorrhea score (P = 0.019), itching score (P = 0.008), sneezing score (P = 0.004), and total nasal symptom score (TNSS) (P ˂ 0.001), but no correlation between LINC00632 and congestion score was observed (P = 0.093). During treatment, LINC00632 was elevated, while TNSS score was reduced (both P ˂ 0.001). Furthermore, LINC00632 increment was associated with the reduction of TNSS score during the therapy (P = 0.005). CONCLUSION LINC00632 relates to milder Th1/Th2 imbalance, attenuated nasal symptoms, and better response during 4-week therapy in AR patients.
Collapse
|
5
|
Peng W, Tang W, Li JD, He RQ, Luo JY, Chen ZX, Zeng JH, Hu XH, Zhong JC, Li Y, Ma FC, Xie TY, Huang SN, Ge LY. Downregulation of the enhancer of zeste homolog 1 transcriptional factor predicts poor prognosis of triple-negative breast cancer patients. PeerJ 2022; 10:e13708. [PMID: 35846880 PMCID: PMC9285492 DOI: 10.7717/peerj.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Di Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Yi Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
6
|
Th17-Gene Expression Profile in Patients with Chronic Venous Disease and Venous Ulcers: Genetic Modulations and Preliminary Clinical Evidence. Biomolecules 2022; 12:biom12070902. [PMID: 35883458 PMCID: PMC9312858 DOI: 10.3390/biom12070902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic venous disease is a condition globally widespread, resulting in a disabling pathological disorder. The CD4 + Th17+ (Cluster Differentiation 4) lymphocytes represent a regulative factor for innate immunity related to the development of complex diseases. Recently, these mechanisms have been associated with vascular disease. The aim of this work is to validate whether the Th17 response correlates with the development of CVI (Chronic venous insufficiency)and CVLUs (chronic venous limbs ulcers) and whether Th17 markers can be used, both as intrinsic risk factors and diagnostic markers, for disease development. PBL derived from peripheral blood samples of patients and controls were subjected to gene expression analysis for IL23R, IL17, SGK1, TGFβ, RORγ, FOXO1, and RANBP1 by qRT-PCR and immunoblot. A post hoc correlation, the diagnostic performance of the target genes, and multivariable analyses were properly conducted. The main expression markers of the CD4 + Th17+ switch were strongly activated in chronic venous insufficiency and in advanced ulceration. The correlation analysis demonstrated the inter-dependence on Th17’s signature modulation. ROC (Receiver Operating Characteristic) analysis defined, for the examined genes, a clinical value as the potential diagnostic markers. Multi-logistic regression studies showed that Th17 markers behave as empirical risk factors for CVD (chronic venous disease) development. Taken together, the present data provide a new hypothesis for the TH17-dependent pathogenesis of CVD, favoring the possibility for the development of new diagnostic, preventive, and therapeutic approaches.
Collapse
|