1
|
Shi Y, Shao Q, Ren Z, Shang G, Han J, Cheng J, Zheng Y, Cheng F, Li C, Wang Q, Wang X. Mechanisms of pulmonary fibrosis and lung cancer induced by chronic PM 2.5 exposure: Focus on the airway epithelial barrier and epithelial-mesenchymal transition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118253. [PMID: 40311473 DOI: 10.1016/j.ecoenv.2025.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
This study aims to provide new insights into PM2.5-induced lung diseases through a focus on the pulmonary epithelial barrier and epithelial-mesenchymal transition (EMT). Firstly, we analyzed the mechanisms by which PM2.5 damages the airway epithelial barrier, including inflammatory responses, immune imbalance, oxidative stress, apoptosis, and autophagy. Subsequently, we investigated the mechanisms by which PM2.5 induces EMT, which involve the synergistic effect of oxidative stress and inflammation, the activation of key signaling pathways, and the regulatory role of non-coding RNAs. Furthermore, we explored the interaction between the airway epithelial barrier and EMT, especially the induction of EMT by epithelial barrier damage and the impact of EMT on epithelial barrier repair. Regarding lung injury diseases, we focused on the roles of the epithelial barrier and EMT in the development of pulmonary fibrosis and lung cancer, providing evidence from in vitro and in vivo studies. Emphasizing the translational prospects from basic research to clinical applications, and we proposed new ideas for treating PM2.5-related lung diseases from four aspects-anti-inflammatory and antioxidant drugs, signaling pathway inhibitors, non-coding RNA-targeted therapies, and gene editing and cell therapies-by focusing on the two key links of the airway epithelial barrier and EMT.
Collapse
Affiliation(s)
- Yuyu Shi
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zilin Ren
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guojiao Shang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinhua Han
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jialin Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxiao Zheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changxiang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qingguo Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Wen Z, Yan S, Amujilata, Feng J, Chen C, Xu Y, Lu M, Xu L, Song X, Li X, Yan R. Characterization of the trehalase function of Haemonchus contortus and its immunomodulatory effect on host PBMCs. Int J Biol Macromol 2025; 309:143102. [PMID: 40222538 DOI: 10.1016/j.ijbiomac.2025.143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Trehalase can hydrolyze trehalose and is the first key enzyme in the chitin synthesis pathway of arthropods. However, little is known about the function of trehalase in Haemonchus contortus (HcTre). In this study, the purified recombinant HcTre protein (rHcTre) was obtained by prokaryotic expression technology, and it was proved that rHcTre protein has trehalase activity. Western blot results verified that HcTre protein belongs to the excretory/secretory proteins of H. contortus, and rHcTre protein can be recognized by goat serum infected with H. contortus. Moreover, Western blot results demonstrated the expression of the HcTre gene in various developmental stages of H. contortus, with the highest level observed during the egg stage. Meanwhile, the immunofluorescence results revealed a widespread distribution of HcTre protein in adult worms. Interestingly, we found that rat serum against rHcTre protein inhibited the development of larvae by blocking the activity of trehalase. Furthermore, the results showed that rHcTre protein significantly inhibited the proliferation and promoted the apoptosis of goat PBMCs in a dose-dependent manner. This study is expected to further understand the immune escape mechanism of H. contortus and provide new drug targets and vaccine candidate molecules for the prevention and control of the disease.
Collapse
Affiliation(s)
- Zhaohai Wen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shuping Yan
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Amujilata
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yongde Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Xia X, Ren P, Bai Y, Li J, Zhang H, Wang L, Hu J, Li X, Ding K. Modulatory Effects of Regulated Cell Death: An Innovative Preventive Approach for the Control of Mastitis. Cells 2024; 13:1699. [PMID: 39451217 PMCID: PMC11506078 DOI: 10.3390/cells13201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mastitis is a common disease worldwide that affects the development of the dairy industry due to its high incidence and complex etiology. Precise regulation of cell death and survival plays a critical role in maintaining internal homeostasis, organ development, and immune function in organisms, and regulatory abnormalities are a common mechanism of various pathological changes. Recent research has shown that regulated cell death (RCD) plays a crucial role in mastitis. The development of drugs to treat cell death and survival abnormalities that can be widely used in mastitis treatment has important clinical significance. This paper will review the molecular mechanisms of apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis and their regulatory roles in mastitis to provide a new perspective for the targeted treatment of mastitis.
Collapse
Affiliation(s)
- Xiaojing Xia
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Pengfei Ren
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Li
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Huihui Zhang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Lei Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Jianhe Hu
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ke Ding
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| |
Collapse
|
4
|
Yan S, Ju X, Lao J, Wen Z, Yong Y, Li Y, Li Y. Overexpression of the Mas1 gene mitigated LPS-induced inflammatory injury in mammary epithelial cells by inhibiting the NF-κB/MAPKs signaling pathways. Front Vet Sci 2024; 11:1446366. [PMID: 39071779 PMCID: PMC11274334 DOI: 10.3389/fvets.2024.1446366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Breast infection is the primary etiology of mastitis in dairy cows, leading to a reduction in the quality of dairy products and resulting in substantial economic losses for animal husbandry. Although antibiotic treatment can eliminate the pathogenic microorganisms that induce mastitis, it cannot repair the inflammatory damage of mammary epithelial cells and blood milk barrier. Mas1 is a G protein-coupled receptor, and its role in lipopolysaccharide (LPS) -induced inflammatory injury to mammary epithelial cells has not been studied. LPS treatment of EpH4 EV cells led to a significant downregulation of Mas1 transcript levels, which attracted our great interest, suggesting that Mas1 may be an important target for the treatment of mastitis. Therefore, this study intends to verify the role of Mas1 in the inflammatory injury of EpH4 EV cells by gene overexpression technology and gene silencing technology. The findings demonstrated that the overexpression of the Mas1 gene effectively reversed the activation of the nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) signaling pathways induced by LPS, while also suppressing the upregulation of pro-inflammatory mediators. Furthermore, overexpression of the Mas1 gene reversed the downregulation of zonula occludens 1 (ZO-1), Occludin, and Claudin-3 caused by LPS, suggesting that Mas1 could promote to repair the blood-milk barrier. However, the silencing of the Mas1 gene using siRNA resulted in a contrasting effect. These results indicated that Mas1 alleviated the inflammatory injury of mammary epithelial cells induced by LPS.
Collapse
Affiliation(s)
- Shuping Yan
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Jianlong Lao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhaohai Wen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Touza-Otero L, Landin M, Diaz-Rodriguez P. Fighting antibiotic resistance in the local management of bovine mastitis. Biomed Pharmacother 2024; 170:115967. [PMID: 38043445 DOI: 10.1016/j.biopha.2023.115967] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine mastitis is a widespread infectious disease with a significant economic burden, accounting for 80 % of the antibiotic usage in dairy animals. In recent years, extensive research has focused on using biomimetic approaches such as probiotics, bacteriocins, bacteriophages, or phytochemicals as potential alternatives to antibiotics. The local administration of therapeutic molecules through the intramammary route is one of the most commonly strategies to manage bovine mastitis. This review highlights the most important findings in this field and discusses their local application in mastitis therapy. In contrast to antibiotics, the proposed alternatives are not limited to promote bacterial death but consider other factors associated to the host microenvironments. To this end, the proposed biomimetic strategies can modulate different stages of infection by modifying the local microbiota, preventing oxidative stress, reducing bacterial adhesion to epithelial cells, modulating the immune response, or mediating the inflammatory process. Numerous in vitro studies support the antimicrobial, antibiofilm or antioxidant properties of these alternatives. However, in vivo studies incorporating these components within pharmaceutical formulations with potential clinical application are limited. The development of secure, stable, and effective drug delivery systems based on the proposed options is necessary to achieve real alternatives to antibiotics in the clinic.
Collapse
Affiliation(s)
- Lara Touza-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Liang Y, Shen L, Ni W, Ding Y, Yang W, Gu T, Zhang C, Yik JHN, Haudenschild DR, Fan S, Shen S, Hu Z. CircGNB1 drives osteoarthritis pathogenesis by inducing oxidative stress in chondrocytes. Clin Transl Med 2023; 13:e1358. [PMID: 37537733 PMCID: PMC10400757 DOI: 10.1002/ctm2.1358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have risen to prominence as important regulators of biological processes. This study investigated whether circGNB1 functions as a competitive endogenous RNA to regulate the pathological process of oxidative stress in age-related osteoarthritis (OA). METHODS The relationship between circGNB1 expression and oxidative stress/OA severity was determined in cartilages from OA patients at different ages. The biological roles of circGNB1 in oxidative stress and OA progression, and its downstream targets were determined using gain- and loss-of-function experiments in various biochemical assays in human chondrocytes (HCs). The in vivo effects of circGNB1 overexpression and knockdown were also determined using a destabilization of the medial meniscus (DMM) mouse model. RESULTS Increased circGNB1 expression was detected in HCs under oxidative and inflammatory stress and in the cartilage of older individuals. Mechanistically, circGNB1 sponged miR-152-3p and thus blocked its interaction with its downstream mRNA target, ring finger protein 219 (RNF219), which in turn stabilized caveolin-1 (CAV1) by preventing its ubiquitination at the K47 residue. CircGNB1 inhibited IL-10 signalling by antagonizing miR-152-3p-mediated RNF219 and CAV1 inhibition. Consequently, circGNB1 overexpression promoted OA progression by enhancing catabolic factor expression and oxidative stress and by suppressing anabolic genes in vitro and in vivo. Furthermore, circGNB1 knockdown alleviated the severity of OA, whereas circGNB1 overexpression had the opposite effect in a DMM mouse model of OA. CONCLUSION CircGNB1 regulated oxidative stress and OA progression via the miR-152-3p/RNF219/CAV1 axis. Modulating circGNB1 could be an effective strategy for treating OA.
Collapse
Affiliation(s)
- Yi Liang
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Lifeng Shen
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Weiyu Ni
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Yuhong Ding
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Wentao Yang
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Tianyuan Gu
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Chenfeng Zhang
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Jasper H. N. Yik
- Ellison Musculoskeletal Research CenterDepartment of Orthopaedic SurgeryUniversity of California SystemDavisCaliforniaUSA
| | - Dominik R. Haudenschild
- Ellison Musculoskeletal Research CenterDepartment of Orthopaedic SurgeryUniversity of California SystemDavisCaliforniaUSA
| | - Shunwu Fan
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Shuying Shen
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| | - Ziang Hu
- Department of Orthopedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|