1
|
Im GI. Clinical updates in mesenchymal stromal cell therapy for osteoarthritis treatment. Expert Opin Biol Ther 2025; 25:187-195. [PMID: 39710894 DOI: 10.1080/14712598.2024.2446612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) is a common chronic musculoskeletal disease with heterogeneous clinical manifestations and variable responses to different treatments. Unfortunately, there is no effective disease modifying therapy at present that can alter the natural course of the disease. Cell therapy based on mesenchymal stromal cells (MSCs) may offer an attractive therapeutic option for OA with their multiple modes of action, particularly immune-regulatory and regenerative capacities. AREAS COVERED In this narrative review, updates on mode of action based on patient's data, factors that can influence the efficacy of MSC treatment, current status in clinical application of MSCs as seen from randomized, controlled OA trials are introduced as well as the author's perspectives in the future of MSCs as OA therapeutics. EXPERT OPINION Symptomatic relief is not sufficient to justify the high cost associated with culture-expanded stem cells. Its advantages and efficacy over simple and low risk/cost modalities should be seriously reevaluated. Also, as the short-term strategy, efforts should be made to lower the cost of MSC therapy. In the future, multiomics technology may help to predict that subgroup of patients who will favorably respond to stem cell treatment, which would enhance the cost effectiveness and therapeutic benefit of MSC therapy.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
2
|
Rendra E, Crigna AT, Daniele C, Sticht C, Cueppers M, Kluth MA, Ganss C, Frank MH, Gretz N, Bieback K. Clinical-grade human skin-derived ABCB5+ mesenchymal stromal cells exert anti-apoptotic and anti-inflammatory effects in vitro and modulate mRNA expression in a cisplatin-induced kidney injury murine model. Front Immunol 2024; 14:1228928. [PMID: 38274791 PMCID: PMC10808769 DOI: 10.3389/fimmu.2023.1228928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in renal function and glomerular filtration rate (GFR). The broadly used anti-cancer chemotherapeutic agent cisplatin often induces AKI as an adverse drug side effect. Therapies targeted at the reversal of AKI and its potential progression to chronic kidney disease or end-stage renal disease are currently insufficiently effective. Mesenchymal stromal cells (MSCs) possess diverse immunomodulatory properties that confer upon them significant therapeutic potential for the treatment of diverse inflammatory disorders. Human dermal MSCs expressing ATP-Binding Cassette member B5 (ABCB5) have shown therapeutic efficacy in clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. In preclinical studies, ABCB5+ MSCs have also shown to reverse metabolic reprogramming in polycystic kidney cells, suggesting a capacity for this cell subset to improve also organ function in kidney diseases. Here, we aimed to explore the therapeutic capacity of ABCB5+ MSCs to improve renal function in a preclinical rat model of cisplatin-induced AKI. First, the anti-apoptotic and immunomodulatory capacity was compared against research-grade adipose stromal cells (ASCs). Then, cross-species immunomodulatory capacity was checked, testing first inhibition of mitogen-driven peripheral blood mononuclear cells and then modulation of macrophage function. Finally, therapeutic efficacy was evaluated in a cisplatin AKI model. First, ABCB5+ MSCs suppressed cisplatin-induced apoptosis of human conditionally-immortalized proximal tubular epithelial cells in vitro, most likely by reducing oxidative stress. Second, ABCB5+ MSCs inhibited the proliferation of either human or rat peripheral blood mononuclear cells, in the human system via the Indoleamine/kynurenine axis and in the murine context via nitric oxide/nitrite. Third, ABCB5+ MSCs decreased TNF-α secretion after lipopolysaccharide stimulation and modulated phagocytosis and in both human and rat macrophages, involving prostaglandin E2 and TGF-β1, respectively. Fourth, clinical-grade ABCB5+ MSCs grafted intravenously and intraperitoneally to a cisplatin-induced AKI murine model exerted modulatory effects on mRNA expression patterns toward an anti-inflammatory and pro-regenerative state despite an apparent lack of amelioration of renal damage at physiologic, metabolic, and histologic levels. Our results demonstrate anti-inflammatory and pro-regenerative effects of clinical grade ABCB5+ MSCs in vitro and in vivo and suggest potential therapeutic utility of this cell population for treatment or prevention of cisplatin chemotherapy-induced tissue toxicity.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Adriana Torres Crigna
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Cristina Daniele
- Medical Faculty Mannheim, Medical Research Centre, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Medical Faculty Mannheim, Medical Research Centre, Heidelberg University, Mannheim, Germany
| | - Maike Cueppers
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | | | | | - Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, United States
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Centre, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Møller-Hansen M, Larsen AC, Wiencke AK, Terslev L, Siersma V, Andersen TT, Hansen AE, Bruunsgaard H, Haack-Sørensen M, Ekblond A, Kastrup J, Utheim TP, Heegaard S. Allogeneic mesenchymal stem cell therapy for dry eye disease in patients with Sjögren's syndrome: A randomized clinical trial. Ocul Surf 2024; 31:1-8. [PMID: 38049032 DOI: 10.1016/j.jtos.2023.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE This double-blinded randomized clinical trial aimed to evaluate the efficacy of injecting allogeneic adipose-derived mesenchymal stem cells (ASCs) into the lacrimal gland (LG) for the treatment of dry eye disease (DED) secondary to Sjögren's syndrome (SS). METHODS Fifty-four participants with severe DED secondary to SS were included and allocated to either ASCs (n = 20), vehicle (n = 20), or a non-randomized observation group (n = 14). The intervention groups received a single injection of either ASCs or an active comparator (vehicle, Cryostor® CS10) into the LG in one eye, while the observation group received lubricating eye drops only. The primary outcome measure was changes in Ocular Surface Disease Index (OSDI) score and secondary outcome measures were non-invasive tear break-up time, tear meniscus height, Schirmer's test, and Oxford score within a 12-month follow-up. RESULTS A significant reduction in OSDI score was observed in the ASCs and vehicle groups compared to the observation group. In addition, the ASCs group demonstrated a significant increase in non-invasive tear break-up time compared to the vehicle group at the 4-week follow-up and to the observation group at the 12-month follow-up. A significant improvement in ocular surface staining, tear osmolarity, and Schirmer test score from baseline was also observed in the ASCs group; however, these changes were not significant compared to the other groups. CONCLUSION Improvement of subjective and objective signs and symptoms of DED was observed in both intervention groups following injection into the LG compared to the observation group. Future studies should investigate the mode-of-action of both injection treatments.
Collapse
Affiliation(s)
- Michael Møller-Hansen
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Ann-Cathrine Larsen
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne K Wiencke
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Terslev
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Dept. of Rheumatology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Volkert Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tobias T Andersen
- Department of Diagnostic Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Adam E Hansen
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Diagnostic Radiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helle Bruunsgaard
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens Kastrup
- Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Cardiology Stem Cell Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tor P Utheim
- Dept. of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Steffen Heegaard
- Dept. of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kearney CM, Korthagen NM, Plomp SGM, Labberté MC, de Grauw JC, van Weeren PR, Brama PAJ. A Translational Model for Repeated Episodes of Joint Inflammation: Welfare, Clinical and Synovial Fluid Biomarker Assessment. Animals (Basel) 2023; 13:3190. [PMID: 37893914 PMCID: PMC10603652 DOI: 10.3390/ani13203190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates repeated low-dose lipopolysaccharide (LPS) injections in equine joints as a model for recurrent joint inflammation and its impact on animal welfare. Joint inflammation was induced in eight horses by injecting 0.25 ng of LPS three times at two-week intervals. Welfare scores and clinical parameters were recorded at baseline and over 168 h post-injection. Serial synoviocentesis was performed for the analysis of a panel of synovial fluid biomarkers of inflammation and cartilage turnover. Clinical parameters and a final synoviocentesis were also performed eight weeks after the last sampling point to assess the recovery of normal joint homeostasis. Statistical methods were used to compare the magnitude of response to each of the 3 LPS inductions and to compare the baseline and final measurements. Each LPS injection produced consistent clinical and biomarker responses, with minimal changes in welfare scores. General matrix metalloproteinase (MMP) activity and joint circumference showed greater response to the second LPS induction, but response to the third was comparable to the first. Gylcosaminoglycans (GAG) levels showed a significantly decreased response with each induction, while collagen-cleavage neoepitope of type II collagen (C2C) and carboxypropetide of type II collagen epitope (CPII) showed quicker responses to the second and third inductions. All parameters were comparable to baseline values at the final timepoint. In conclusion, a consistent, reliable intra-articular inflammatory response can be achieved with repeated injections of 0.25 ng LPS, with minimal impact on animal welfare, suggesting potential as a refined translational model of recurrent joint inflammation.
Collapse
Affiliation(s)
- Clodagh M. Kearney
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Saskia G. M. Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Margot C. Labberté
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| | - Janny C. de Grauw
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Pieter A. J. Brama
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| |
Collapse
|
5
|
Copp G, Robb KP, Viswanathan S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol Immunol 2023; 20:626-650. [PMID: 37095295 PMCID: PMC10229578 DOI: 10.1038/s41423-023-01020-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative multifactorial disease with concomitant structural, inflammatory, and metabolic changes that fluctuate in a temporal and patient-specific manner. This complexity has contributed to refractory responses to various treatments. MSCs have shown promise as multimodal therapeutics in mitigating OA symptoms and disease progression. Here, we evaluated 15 randomized controlled clinical trials (RCTs) and 11 nonrandomized RCTs using culture-expanded MSCs in the treatment of knee OA, and we found net positive effects of MSCs on mitigating pain and symptoms (improving function in 12/15 RCTs relative to baseline and in 11/15 RCTs relative to control groups at study endpoints) and on cartilage protection and/or repair (18/21 clinical studies). We examined MSC dose, tissue of origin, and autologous vs. allogeneic origins as well as patient clinical phenotype, endotype, age, sex and level of OA severity as key parameters in parsing MSC clinical effectiveness. The relatively small sample size of 610 patients limited the drawing of definitive conclusions. Nonetheless, we noted trends toward moderate to higher doses of MSCs in select OA patient clinical phenotypes mitigating pain and leading to structural improvements or cartilage preservation. Evidence from preclinical studies is supportive of MSC anti-inflammatory and immunomodulatory effects, but additional investigations on immunomodulatory, chondroprotective and other clinical mechanisms of action are needed. We hypothesize that MSC basal immunomodulatory "fitness" correlates with OA treatment efficacy, but this hypothesis needs to be validated in future studies. We conclude with a roadmap articulating the need to match an OA patient subset defined by molecular endotype and clinical phenotype with basally immunomodulatory "fit" or engineered-to-be-fit-for-OA MSCs in well-designed, data-intensive clinical trials to advance the field.
Collapse
Affiliation(s)
- Griffin Copp
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Punzón E, García-Castillo M, Rico MA, Padilla L, Pradera A. Local, systemic and immunologic safety comparison between xenogeneic equine umbilical cord mesenchymal stem cells, allogeneic canine adipose mesenchymal stem cells and placebo: a randomized controlled trial. Front Vet Sci 2023; 10:1098029. [PMID: 37266387 PMCID: PMC10229832 DOI: 10.3389/fvets.2023.1098029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Mesenchymal stem cells are multipotent cells with a wide range of therapeutic applications, including, among others, tissue regeneration. This work aims to test the safety (EUC-MSC) of intra-articular administration of equine umbilical cord mesenchymal stem cells in young healthy dogs under field conditions following single and repeated administration. This was compared with the safety profile of allogenic canine adipose derived mesenchymal stem cells (CAD-MSC) and placebo in order to define the safety of xenogeneic use of mesenchymal stem cells when administered intra-articular. Twenty-four police working dogs were randomized in three groups in a proportion 1:1:1. EUC-MSCs and CAD-MSCs were obtained from healthy donors and were manufactured following company SOPs and under GMP and GMP-like conditions, respectively, and compliant all necessary controls to ensure the quality of the treatment. The safety of the treatment was evaluated locally, systemically and immunologically. For this purpose, an orthopedic examination and Glasgow test for the assessment of pain in the infiltrated joint, blood tests, clinical examination and analysis of the humoral and cellular response to treatment were performed. No adverse events were detected following single and repeated MSC administration despite both equine and canine MSC generate antibody titres in the dogs. The intra-articular administration of equine umbilical cord mesenchymal stem cells in dogs has demonstrated to be safe.
Collapse
|
7
|
Fan M, Zhang J, Zhou L, Chen Z, Bao R, Zheng L, Tong P, Ma Y, Shan L. Intra-articular injection of placental mesenchymal stromal cells ameliorates pain and cartilage anabolism/catabolism in knee osteoarthritis. Front Pharmacol 2022; 13:983850. [PMID: 36523496 PMCID: PMC9745038 DOI: 10.3389/fphar.2022.983850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/14/2022] [Indexed: 08/29/2023] Open
Abstract
Background: Knee Osteoarthritis (kOA), the most common joint degenerative disorder, lacks effective therapeutics. Placenta-derived mesenchymal stromal cells (PMSCs) are effective in tissue repairing and generation, which have potential in treating kOA. This study aimed to determine the anti-kOA efficacy of PMSCs and to explore its action mode. Methods: Flow cytometry and three-line differentiation were performed for identification of PMSCs. In vivo, a rat kOA model established by anterior cruciate ligament transection (ACLT) surgery was used to evaluate the efficacy of PMSCs. Histopathological HE and SO staining with Osteoarthritis Research Society International scoring were conducted, and cartilage expressions of MMP13 and Col2 were measured by immunohistochemistry. Pain behavior parameters by mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL), were measured. In vitro, wound healing and cell immunofluorescence assays were conducted to detect the proliferation and migration ability of chondrocytes treated with PMSCs conditioned medium (PMSCs-CM). Quantitative real-time PCR (qRT-PCR) and Western blot (WB) assays were applied to explore the molecular action of PMSCs on chondrocytes. Results: The results of flow cytometry indicated that the surface markers of PMSCs (CD73 > 95%, CD90 > 95%, and CD34 < 2%) were consistent with the typical mesenchymal stromal cells. The in vivo data showed that PMSCs significantly reversed the kOA progression by protection of cartilage, regulation of anabolic (Col2) and catabolic (MMP13) expressions, and relief of pain symptoms. The in vitro data showed that PMSCs promoted chondrocyte proliferation and migration and significantly restored the IL-1β-induced abnormal gene expressions of Col2, Mmp13, Adamts4, Adamts5 and Sox9 and also restored the abnormal protein expressions of Col2, Mmp13 and Sox9 of chondrocytes. The molecular actions of PMSCs on chondrocytes in nested co-culture way or in conditioned medium way were similar, confirming a paracrine-based mode of action. Conclusion: This study demonstrated PMSCs' anti-kOA efficacy and its paracrine-based action mode, providing novel knowledge of PMSCs and suggesting it as a promising cell therapy for treatment of kOA.
Collapse
Affiliation(s)
- Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwen Zhang
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co Ltd), Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ronghua Bao
- Fuyang Orthopaedics and Traumatology Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuhai Ma
- The Department of Orthopedics, Hangzhou Hospital of Zhejiang Provincial Armed Police Corps, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co Ltd), Hangzhou, China
| |
Collapse
|