1
|
Lui PP, Xu JZ, Aziz H, Sen M, Ali N. Jagged-1+ skin Tregs modulate cutaneous wound healing. Sci Rep 2024; 14:20999. [PMID: 39251686 PMCID: PMC11385218 DOI: 10.1038/s41598-024-71512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Skin-resident regulatory T cells (Tregs) play an irreplaceable role in orchestrating cutaneous immune homeostasis and repair, including the promotion of hair regeneration via the Notch signaling ligand Jagged-1 (Jag1). While skin Tregs are indispensable for facilitating tissue repair post-wounding, it remains unknown if Jag1-expressing skin Tregs impact wound healing. Using a tamoxifen inducible Foxp3creERT2Jag1fl/fl model, we show that loss of functional Jag1 in Tregs significantly delays the rate of full-thickness wound closure. Unlike in hair regeneration, skin Tregs do not utilize Jag1 to impact epithelial stem cells during wound healing. Instead, mice with Treg-specific Jag1 ablation exhibit a significant reduction in Ly6G + neutrophil accumulation at the wound site. However, during both homeostasis and wound healing, the loss of Jag1 in Tregs does not impact the overall abundance or activation profile of immune cell targets in the skin, such as CD4+ and CD8+ T cells, or pro-inflammatory macrophages. This collectively suggests that skin Tregs may utilize Jag1-Notch signalling to co-ordinate innate cell recruitment under conditions of injury but not homeostasis. Overall, our study demonstrates the importance of Jag1 expression in Tregs to facilitate adequate wound repair in the skin.
Collapse
Affiliation(s)
- Prudence PokWai Lui
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Jessie Z Xu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Hafsah Aziz
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Monica Sen
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
2
|
Sundberg JP, Wang EHC, McElwee KJ. Current Protocols: Alopecia Areata Mouse Models for Drug Efficacy and Mechanism Studies. Curr Protoc 2024; 4:e1113. [PMID: 39105684 DOI: 10.1002/cpz1.1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Alopecia areata is the second most common form of hair loss in humans after androgenetic alopecia. Although a variety of animal models for alopecia areata have been described, currently the C3H/HeJ mouse model is the most commonly used and accepted. Spontaneous hair loss occurs in 15%-25% of older mice in which the lesions wax and wane, similar to the human disease, with alopecia being more common and severe in female mice. Full-thickness skin grafts from mice with spontaneous alopecia areata to young, normal-haired, histocompatible mice provide a highly reproducible model with progressive lesions that makes it useful for drug efficacy and mechanism-based studies. As alopecia areata is a cell-mediated autoimmune disease, transfer of cultured lymph node cells from affected mice to unaffected, histocompatible recipients also promotes disease development and provides an alternative, nonsurgical protocol. Protocols are presented to produce these models such that they can be used to study alopecia areata and to develop novel drug therapies. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Full-thickness skin grafts to reproducibly induce alopecia areata in C3H/HeJ mice Basic Protocol 2: Adoptive transfer of cultured lymphoid cells provides a nonsurgical method to induce alopecia areata in C3H/HeJ mice.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, Maine
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddy H C Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Skin Science, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
3
|
Thiolat A, Pilon C, Caudana P, Moatti A, To NH, Sedlik C, Leclerc M, Maury S, Piaggio E, Cohen JL. Treg-targeted IL-2/anti-IL-2 complex controls graft- versus-host disease and supports anti-tumor effect in allogeneic hematopoietic stem cell transplantation. Haematologica 2024; 109:129-142. [PMID: 37706355 PMCID: PMC10772500 DOI: 10.3324/haematol.2022.282653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Modulating an immune response in opposite directions represents the holy grail in allogeneic hematopoietic stem cell transplantation (allo-HSCT) to avoid insufficient reactivity of donor T cells and hematologic malignancy relapse while controlling the potential development of graft-versus-host disease (GVHD), in which donor T cells attack the recipient's tissues. IL-2/anti-IL-2 complexes (IL-2Cx) represent a therapeutic option to selectively accentuate or dampen the immune response. In dedicated experimental models of allo-HSCT, including also human cells injected in immunodeficient NSG mice, we evaluated side-by-side the therapeutic effect of two IL-2Cx designed either to boost regulatory T cells (Treg) or alternatively to activate effector T cells (Teff), on GVHD occurrence and tumor relapse. We also evaluated the effect of the complexes on the phenotype and function of immune cells in vivo. Unexpectedly, both pro-Treg and pro-Teff IL-2Cx prevented GVHD development. They both induced Treg expansion and reduced CD8+ T-cell numbers, compared to untreated mice. However, only mice treated with the pro-Treg IL-2Cx, showed a dramatic reduction of exhausted CD8+ T cells, consistent with a potent anti-tumor effect. When evaluated on human cells, pro-Treg IL-2Cx also preferentially induced Treg expansion in vitro and in vivo, while allowing the development of a potent anti-tumor effect in NSG mice. Our results demonstrate the clinical relevance of using a pro-Treg, but not a pro-Teff IL2Cx to modulate alloreactivity after HSCT, while promoting a graft-versus-leukemia effect.
Collapse
Affiliation(s)
- Allan Thiolat
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Caroline Pilon
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil
| | - Pamela Caudana
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - Audrey Moatti
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Nhu Hanh To
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Christine Sedlik
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - Mathieu Leclerc
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, F-94010 Créteil
| | - Sébastien Maury
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil, France; AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, F-94010 Créteil
| | - Eliane Piaggio
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - José L Cohen
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil.
| |
Collapse
|
4
|
Passeron T, King B, Seneschal J, Steinhoff M, Jabbari A, Ohyama M, Tobin DJ, Randhawa S, Winkler A, Telliez JB, Martin D, Lejeune A. Inhibition of T-cell activity in alopecia areata: recent developments and new directions. Front Immunol 2023; 14:1243556. [PMID: 38022501 PMCID: PMC10657858 DOI: 10.3389/fimmu.2023.1243556] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.
Collapse
Affiliation(s)
- Thierry Passeron
- University Côte d’Azur, Centre Hospitalier Universitaire Nice, Department of Dermatology, Nice, France
- University Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Julien Seneschal
- Department of Dermatology and Paediatric Dermatology, National Reference Centre for Rare Skin Diseases, Saint-André Hospital, University of Bordeaux, Bordeaux, France
- Bordeaux University, Centre national de la recherche scientifique (CNRS), ImmunoConcept, UMR5164, Bordeaux, France
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Desmond J. Tobin
- Charles Institute of Dermatology, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
5
|
Knoedler S, Knoedler L, Kauke-Navarro M, Rinkevich Y, Hundeshagen G, Harhaus L, Kneser U, Pomahac B, Orgill DP, Panayi AC. Regulatory T cells in skin regeneration and wound healing. Mil Med Res 2023; 10:49. [PMID: 37867188 PMCID: PMC10591349 DOI: 10.1186/s40779-023-00484-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
As the body's integumentary system, the skin is vulnerable to injuries. The subsequent wound healing processes aim to restore dermal and epidermal integrity and functionality. To this end, multiple tissue-resident cells and recruited immune cells cooperate to efficiently repair the injured tissue. Such temporally- and spatially-coordinated interplay necessitates tight regulation to prevent collateral damage such as overshooting immune responses and excessive inflammation. In this context, regulatory T cells (Tregs) hold a key role in balancing immune homeostasis and mediating cutaneous wound healing. A comprehensive understanding of Tregs' multifaceted field of activity may help decipher wound pathologies and, ultimately, establish new treatment modalities. Herein, we review the role of Tregs in orchestrating the regeneration of skin adnexa and catalyzing healthy wound repair. Further, we discuss how Tregs operate during fibrosis, keloidosis, and scarring.
Collapse
Affiliation(s)
- Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Leonard Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 85764, Germany
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, 67071, Germany.
| |
Collapse
|
6
|
Toh EQ, Wang ECE. Targeted immunotherapy for hair regrowth and regeneration. Front Med (Lausanne) 2023; 10:1285452. [PMID: 37881630 PMCID: PMC10595013 DOI: 10.3389/fmed.2023.1285452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- En Qi Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
7
|
Wan S, Xu W, Xie B, Guan C, Song X. The potential of regulatory T cell-based therapies for alopecia areata. Front Immunol 2023; 14:1111547. [PMID: 37205097 PMCID: PMC10186346 DOI: 10.3389/fimmu.2023.1111547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Cytotoxic T lymphocyte has been a concern for the etiopathogenesis of alopecia areata (AA), some recent evidence suggests that the regulatory T (Treg) cell deficiency is also a contributing factor. In the lesional scalp of AA, Treg cells residing in the follicles are impaired, leading to dysregulated local immunity and hair follicle (HF) regeneration disorders. New strategies are emerging to modulate Treg cells' number and function for autoimmune diseases. There is much interest to boost Treg cells in AA patients to suppress the abnormal autoimmunity of HF and stimulate hair regeneration. With few satisfactory therapeutic regimens available for AA, Treg cell-based therapies could be the way forward. Specifically, CAR-Treg cells and novel formulations of low-dose IL-2 are the alternatives.
Collapse
Affiliation(s)
- Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuiping Guan
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiuzu Song, ; Cuiping Guan,
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Xiuzu Song, ; Cuiping Guan,
| |
Collapse
|