1
|
Hsu AT, O'Donoghue RJJ, Tsantikos E, Gottschalk TA, Borger JG, Gherardin NA, Xu C, Koay HF, Godfrey DI, Ernst M, Anderson GP, Hibbs ML. An unconventional T cell nexus drives HCK-mediated chronic obstructive pulmonary disease in mice. EBioMedicine 2025; 115:105707. [PMID: 40245497 DOI: 10.1016/j.ebiom.2025.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a heterogeneous inflammatory lung disease leading to progressive, destructive lung function decline, disability and death, and it is refractory to all current treatments. Haematopoietic cell kinase (HCK) is a druggable SRC-family non-receptor protein tyrosine kinase and COPD candidate gene. It is implicated in the chronic and non-resolving inflammation that causes mucosecretory bronchitis and destruction of small airways and alveoli, but how it drives pathophysiology remains obscure. METHODS Studies primarily utilised gene-targeted mice with a gain-of-function mutation in Hck that rendered the enzyme constitutively active. Bone marrow chimeras were established to determine the origin of disease, and the lung disease was investigated using histopathology, morphometry, flow cytometry and single-cell sequencing techniques. Detailed pathways mediating disease pathogenesis were examined using specialised knockout mice. FINDINGS HckF/F mice developed intense granulocytic mucosecretory inflammation. Bone marrow chimeras revealed that stromal-derived granulocyte-colony-stimulating factor (G-CSF) resulted in lung inflammation and emphysema but not mucus production; while its upstream regulator, interleukin (IL)-17A, itself implicated in emphysema and mucus overproduction, was produced by Vγ6Vδ1 T cells that were recruited to airspaces. Nonetheless, lung disease was unchanged upon genetic deletion of γδ T cells, due to niche-filling expansion of IL-17A-producing mucosal-associated invariant T cells. Strikingly, IL-17A deletion abrogated inflammation, alveolar destruction and mucus overproduction in HckF/F lungs. INTERPRETATION These findings highlight the role of HCK as an apical regulator of an unconventional T cell axis that drives IL-17A/G-CSF/granulocyte-mediated pathology in COPD, and underscore the rationale for therapeutically targeting HCK. FUNDING This work received support from the National Health and Medical Research Council Australia, the Victorian Cancer Agency, Melbourne Australia, the Australian Research Council, the Australian Government and the School of Translational Medicine, Monash University, Australia.
Collapse
Affiliation(s)
- Amy T Hsu
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Robert J J O'Donoghue
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Victoria, 3084, Australia
| | - Evelyn Tsantikos
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Timothy A Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Jessica G Borger
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Calvin Xu
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, Victoria, 3084, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Margaret L Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
2
|
Hickey MJ, Sudhakar V. Looking below the surface: using intravital imaging to decipher inflammatory renal disease and renal cell injury. Am J Physiol Renal Physiol 2025; 328:F418-F430. [PMID: 39918796 DOI: 10.1152/ajprenal.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Renal function can be perturbed by a range of stimuli that cause cellular injury and inflammation in the kidney. These injurious and inflammatory processes are typically dynamic and progressive, involving the actions of highly migratory cells such as leukocytes and cellular responses that occur over time spans ranging from seconds to weeks. Understanding these dynamic responses has entailed the use of imaging technologies that allow visualization and capture of events over different time spans, ideally in intact organs in live, experimental animals. The technique that allows this is intravital imaging. Intravital imaging, particularly multiphoton intravital microscopy, has been crucial to the investigation of dynamic physiological and pathophysiological processes in the kidney for many years, driving key developments in our understanding of renal (patho)physiology. This includes the mechanisms of ultrafiltrate generation, the response to acute kidney injury, and how inflammatory leukocytes are recruited to and cause injury in the kidney. This review describes the key studies that have applied intravital imaging to the investigation of models of inflammatory renal disease. The responses examined include those restricted to the glomerulus and the effects of acute kidney injury on the tubulointerstitium. Future innovations and directions in this field of research are also discussed.
Collapse
Affiliation(s)
- Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Vaishnavi Sudhakar
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Li X, Villanueva V, Jimenez V, Nguyen B, Chauhan NR, Khan SQ, Dorschner JM, Jensen MA, Alzahrani K, Wei H, Cimbaluk DJ, Wei DC, Jolly M, Lopez-Rodriguez D, Pineda SB, Barbosa A, Vazquez-Padron RI, Faridi HM, Reiser J, Niewold TB, Gupta V. CD11b suppresses TLR7-driven inflammatory signaling to protect against lupus nephritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605143. [PMID: 39211173 PMCID: PMC11361177 DOI: 10.1101/2024.07.26.605143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lupus Nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) that affects kidney function. Here, we investigated the role of CD11b, a protein encoded by the ITGAM gene, in the development of LN and its functional activation as a therapeutic strategy. Genetic coding variants of ITGAM significantly increase the risk for SLE and LN by producing a less active CD11b and leading to elevated levels of type I interferon (IFN I). However, a molecular mechanism for how these variants increase LN risk has been unclear. Here, we determined that these variants also significantly associate with elevations in soluble urokinase plasminogen activator receptor (suPAR), a known biomarker linked to kidney disease, suggesting a novel molecular connection. Pharmacologic activation of CD11b with a novel, clinical-stage agonist ONT01 significantly suppressed suPAR production in myeloid cells and reduced systemic inflammation and kidney damage in multiple experimental models of LN. Importantly, delaying treatment with ONT01 until after disease onset also significantly reduced serum suPAR and inflammatory cytokines, and decreased immune complex deposition in the glomerulus, glomerulonephritis and albuminuria, suggesting that CD11b activation is therapeutic for LN. Genetic activation of CD11b via a gain-of-function CD11b mutation also showed complete protection from LN, whereas genetic deletion of CD11b worsened the disease in mice, providing further evidence of the role of CD11b activation in regulating LN. Finally, transfer of human LN PBMCs generated human LN like disease in mice that was significantly reduced by ONT01. Together, these data provide strong evidence that ONT01 mediated CD11b activation can therapeutically modulate TLR7-driven inflammation and protect against LN. These findings support clinical development of CD11b agonists as novel therapeutics for treating lupus nephritis in human patients.
Collapse
|
4
|
Yan Q, Liu Z, Chen Y, Zhang X, Zheng W, Liu X, Huang H, Liu Q, Jiang Y, Zhan S, Huang X. ITGAM-macrophage modulation as a potential strategy for treating neutrophilic Asthma: insights from bioinformatics analysis and in vivo experiments. Apoptosis 2024; 29:393-411. [PMID: 37950848 DOI: 10.1007/s10495-023-01914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Identification of molecular biomarkers associated with neutrophilic asthma (NA) phenotype may inform the discovery of novel pathobiological mechanisms and the development of diagnostic markers. Three mRNA transcriptome datasets extracted from induced sputum of asthma patients with various inflammatory types were used to screen for macrophage-related molecular mechanisms and targets in NA. Furthermore, the predicted targets were also validated on an independent dataset (N = 3) and animal model (N = 5). A significant increase in total cells, neutrophils and macrophages was observed in bronchoalveolar lavage (BAL) fluid of NA mice induced by ovalbumin/freund's adjuvant, complete (OVA/CFA). And we also found elevated levels of neutrophil and macrophage infiltration in NA subtype in external datasets. NA mice had increased secretion of IgE, IL-1β, TNF-α and IL-6 in serum and BAL fluid. MPO, an enzyme present in neutrophils, was also highly expressed in NA mice. Then, weighted gene co-expression network analysis (WGCNA) identified 684 targets with the strongest correlation with NA, and we obtained 609 macrophage-related specific differentially expressed genes (DEGs) in NA by integrating macrophage-related genes. The top 10 genes with high degree values were obtained and their mRNA levels and diagnostic performance were then determined by RT-qPCR and receiver operator characteristic (ROC) analysis. Statistically significant correlations were found between macrophages and all key targets, with the strongest correlation between ITGAM and macrophages in NA. Double-Immunofluorescence staining further confirmed the co-localization of ITGAM and F4/80 in NA. ITGAM was identified as a critical target to distinguish NA from healthy/non-NA individuals, which may provide a novel avenue to further uncover the mechanisms and therapy of NA.
Collapse
Affiliation(s)
- Qian Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zixing Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujing Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Haikou hospital of Chinese traditional medicine, Haikou, China
| | - Xinxin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
5
|
Bendapudi PK, Nazeen S, Ryu J, Söylemez O, Robbins A, Rouaisnel B, O’Neil JK, Pokhriyal R, Yang M, Colling M, Pasko B, Bouzinier M, Tomczak L, Collier L, Barrios D, Ram S, Toth-Petroczy A, Krier J, Fieg E, Dzik WH, Hudspeth JC, Pozdnyakova O, Nardi V, Knight J, Maas R, Sunyaev S, Losman JA. Low-frequency inherited complement receptor variants are associated with purpura fulminans. Blood 2024; 143:1032-1044. [PMID: 38096369 PMCID: PMC10950473 DOI: 10.1182/blood.2023021231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024] Open
Abstract
ABSTRACT Extreme disease phenotypes can provide key insights into the pathophysiology of common conditions, but studying such cases is challenging due to their rarity and the limited statistical power of existing methods. Herein, we used a novel approach to pathway-based mutational burden testing, the rare variant trend test (RVTT), to investigate genetic risk factors for an extreme form of sepsis-induced coagulopathy, infectious purpura fulminans (PF). In addition to prospective patient sample collection, we electronically screened over 10.4 million medical records from 4 large hospital systems and identified historical cases of PF for which archived specimens were available to perform germline whole-exome sequencing. We found a significantly increased burden of low-frequency, putatively function-altering variants in the complement system in patients with PF compared with unselected patients with sepsis (P = .01). A multivariable logistic regression analysis found that the number of complement system variants per patient was independently associated with PF after controlling for age, sex, and disease acuity (P = .01). Functional characterization of PF-associated variants in the immunomodulatory complement receptors CR3 and CR4 revealed that they result in partial or complete loss of anti-inflammatory CR3 function and/or gain of proinflammatory CR4 function. Taken together, these findings suggest that inherited defects in CR3 and CR4 predispose to the maladaptive hyperinflammation that characterizes severe sepsis with coagulopathy.
Collapse
Affiliation(s)
- Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sumaiya Nazeen
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Justine Ryu
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Onuralp Söylemez
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Alissa Robbins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Betty Rouaisnel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jillian K. O’Neil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruchika Pokhriyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Meaghan Colling
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bryce Pasko
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Michael Bouzinier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Lindsay Tomczak
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lindsay Collier
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - David Barrios
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - Agnes Toth-Petroczy
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joel Krier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Elizabeth Fieg
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Walter H. Dzik
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - James C. Hudspeth
- Department of Medicine, Boston Medical Center, Boston, MA
- Boston University School of Medicine, Boston, MA
| | - Olga Pozdnyakova
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Valentina Nardi
- Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT
| | - Richard Maas
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shamil Sunyaev
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Julie-Aurore Losman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
6
|
Tan Z, Hall P, Costin A, Crawford SA, Ramm G, Wong CHY, Kitching AR, Hickey MJ. Removal of the endothelial surface layer via hyaluronidase does not modulate monocyte and neutrophil interactions with the glomerular endothelium. Microcirculation 2023; 30:e12823. [PMID: 37494581 PMCID: PMC10909409 DOI: 10.1111/micc.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown. METHODS We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase. RESULTS Constitutive retention and migration of monocytes and neutrophils within the glomerular microvasculature was unaltered by hyaluronidase. Consistent with this, inhibition of the hyaluronan-binding molecule CD44 also failed to modulate glomerular trafficking of these immune cells. To investigate the contribution of the ESL during acute inflammation, we induced glomerulonephritis via in situ immune complex deposition. This resulted in increases in glomerular retention of monocytes and neutrophils but did not induce marked reduction in the glomerular ESL. Furthermore, hyaluronidase treatment did not modify the prolonged retention of monocytes and neutrophils in the acutely inflamed glomerular microvasculature. CONCLUSIONS These observations indicate that, despite evidence that the ESL has the capacity to inhibit leukocyte-endothelial cell interactions while also containing adhesive ligands for immune cells, neither of these functions modulate trafficking of monocytes and neutrophils in steady-state or acutely-inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Simon A. Crawford
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Department of Pediatric NephrologyMonash Medical CentreClaytonVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| |
Collapse
|