1
|
Veuskens BRJ, Brouwer MC, van Mierlo G, Geissler J, van Leeuwen K, Derlagen M, Keijzer NCH, Hoogenboezem M, Kuijpers TW, Pouw RB. Factor H-related 2 levels dictate FHR dimer composition. Sci Rep 2025; 15:10669. [PMID: 40148491 PMCID: PMC11950314 DOI: 10.1038/s41598-025-94064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Factor H-related (FHR) protein 1 and 2 form dimers resulting in FHR-1 and -2 homodimers, and FHR-1/2 heterodimers. Dimerization is hypothesized to further increase their antagonistic function with complement regulator factor H (FH). So far, only FHR-1 homodimers and FHR-1/2 heterodimers could be quantified in a direct way. With the reported genetic associations between CFHR2 and complement-related diseases such as age related macular degeneration and C3-glomerulopathy, direct assessment of FHR-2/2 levels determining the dimer distribution of FHR-1 and -2 is needed to further elucidate their role within complement regulation. Therefore, novel in-house generated FHR-2 antibodies were used to develop a specific ELISA to enable direct quantification of FHR-2 homodimers. Allowing for the first time the accurate measurement of all FHR-1 and -2 containing dimers in a large cohort of healthy donors. By using native FHR-1 and -2 or deficient plasma, we determined the stability, kinetics and distribution of FHR-1 and -2 dimers. Additionally, we show how genetic variants influence dimer levels. Our results confirm a rapid, dynamic, dimer formation in plasma and show FHR-1/2 dimerization rearches a distribution equilibrium that is limited by the relative low levels of FHR-2 in relation to its dimerization partner FHR-1.
Collapse
Affiliation(s)
- Bert R J Veuskens
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Mieke C Brouwer
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Judy Geissler
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
- Sanquin Diagnostic Services, 1066 CX, Amsterdam, The Netherlands
| | - Maaike Derlagen
- Sanquin Diagnostic Services, 1066 CX, Amsterdam, The Netherlands
| | | | - Mark Hoogenboezem
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
- Department of Paediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Richard B Pouw
- Sanquin Research and Landsteiner Laboratory of the Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Inflammatory Diseases, Amsterdam, The Netherlands.
- Sanquin Diagnostic Services, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
3
|
Menon SS, Ramirez-Toloza G, Wycoff KL, Ehinger S, Shaughnessy J, Ram S, Ferreira VP. Mechanisms by which Factor H protects Trypanosoma cruzi from the alternative pathway of complement. Front Immunol 2024; 15:1152000. [PMID: 38361922 PMCID: PMC10867245 DOI: 10.3389/fimmu.2024.1152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Chagas disease, a chronic disabling disease caused by the protozoan Trypanosoma cruzi, has no standardized treatment or preventative vaccine. The infective trypomastigote form of T. cruzi is highly resistant to killing by the complement immune system. Factor H (FH), a negative regulator of the alternative pathway (AP) of complement on cell surfaces and in blood, contains 20 short consensus repeat domains. The four N-terminal domains of FH inactivate the AP, while the other domains interact with C3b/d and glycan markers on cell surfaces. Various pathogens bind FH to inactivate the AP. T. cruzi uses its trans-sialidase enzyme to transfer host sialic acids to its own surface, which could be one of the approaches it uses to bind FH. Previous studies have shown that FH binds to complement-opsonized T. cruzi and parasite desialylation increases complement-mediated lysis of trypomastigotes. However, the molecular basis of FH binding to T. cruzi remain unknown. Only trypomastigotes, but not epimastigotes (non-infective, complement susceptible) bound FH directly, independent of C3 deposition, in a dose-dependent manner. Domain mapping experiments using 3-5 FH domain fragments showed that domains 5-8 competitively inhibited FH binding to the trypomastigotes by ~35% but did not decrease survival in complement. FH-Fc or mutant FH-Fc fusion proteins (3-11 contiguous FH domains fused to the IgG Fc) also did not kill trypomastigotes. FH-related protein-5, whose domains bear significant sequence identity to all known polyanion-binding FH domains (6-7, 10-14, 19-20), fully inhibited FH binding to trypomastigotes and reduced trypomastigote survival to < 24% in the presence of serum. In conclusion, we have elucidated the role of FH in complement resistance of trypomastigotes.
Collapse
Affiliation(s)
- Smrithi S. Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Galia Ramirez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | | | - Sean Ehinger
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
4
|
Evaluating the clinical utility of measuring levels of factor H and the related proteins. Mol Immunol 2022; 151:166-182. [PMID: 36162225 DOI: 10.1016/j.molimm.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
After years of disappointing clinical results, the tide has finally changed and complement targeted-therapies have become a validated and accepted treatment option for several diseases. These accomplishments have revitalized the field and brought renewed attention to the prospects that complement therapeutics can offer. Streamlining diagnostics and therapeutics is imperative in this new era of clinical use of complement therapeutics. However, the incredible success in therapeutics has not been accompanied by the development of novel standardized tools for complement testing. Complement biomarkers can assist in the risk assessment and diagnosis of diseases as well as the prediction of disease progression and treatment response. Recently, a group of complement proteins has been suggested to be highly relevant in various complement-associated disorders, namely the human factor H (FH) protein family. This family of closely related proteins consists of FH, FH-like protein 1, and five factor H-related proteins, and they have been linked to eye, kidney, infectious, vascular, and autoimmune diseases as well as cancer. The goal of this review is to provide a comprehensive overview of the available data on circulating levels of FH and its related proteins in different pathologies. In addition, we examined the current literature to determine the clinical utility of measuring levels of the FH protein family in health and disease. Finally, we discuss future steps that are needed to make their clinical translation a reality.
Collapse
|