1
|
Zekavat OR, Movahednezhad Y, Shahsavani A, Haghpanah S, Shokrgozar N, Golmoghaddam H, Kalani M, Bordbar MR, Arandi N. Abnormal frequency of the memory B cell subsets and plasmablasts in patients with congenital severe hemophilia A: correlation with "Inhibitor" formation. Blood Res 2024; 59:16. [PMID: 38625415 PMCID: PMC11021380 DOI: 10.1007/s44313-024-00017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Development of antibodies against infused Factor VIII (FVIII) or "inhibitors" represents a major challenge following FVIII replacement therapy in patients with hemophilia A (HA). Recent studies have shown that certain cellular compartments of the immune system contribute to the production of such antibodies. Herein, we determined the frequency of class-switched CD19+IgD-CD27+/non-class-switched CD19+IgD+CD27+ memory B cell subsets and CD19+CD27hiCD38hi plasmablasts in patients with severe HA and their association with the development of inhibitors in these patients. METHODS This cross-sectional case-control study enrolled 32 patients with severe HA, including 8 with and 24 without inhibitors, and 24 healthy individuals. The frequencies of the memory B cell subsets and plasmablasts were determined using flow cytometry. RESULTS The frequency of CD19+IgD+CD27+ non-class-switched memory B cells was significantly lower in patients with HA (including both patients with and without inhibitors) than in healthy controls. The percentages of both CD19+IgD-CD27+ class-switched and CD19+IgD+CD27+ non-class-switched memory B cells did not differ significantly between patients with and without inhibitors. HA patients with inhibitors had significantly higher proportions of CD19+CD27hiCD38hi plasmablasts than the control group as well as the inhibitor (-) ones. No significant correlation was observed between the inhibitor levels with the percentages of memory B cell subsets and plasmablasts. CONCLUSION This study is the first to demonstrate a dysregulated proportion of CD19+IgD+CD27+ non-class-switched memory B cells and CD19+CD27hiCD38hi plasmablasts in patients with severe HA. Therefore, strategies targeting memory B-cell/plasmablast differentiation may have promising outcomes in the management of inhibitor formation in patients with severe HA.
Collapse
Affiliation(s)
- Omid Reza Zekavat
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Shahsavani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sezaneh Haghpanah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Shokrgozar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Golmoghaddam
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nargess Arandi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Bertolini TB, Herzog RW, Kumar SRP, Sherman A, Rana J, Kaczmarek R, Yamada K, Arisa S, Lillicrap D, Terhorst C, Daniell H, Biswas M. Suppression of anti-drug antibody formation against coagulation factor VIII by oral delivery of anti-CD3 monoclonal antibody in hemophilia A mice. Cell Immunol 2023; 385:104675. [PMID: 36746071 PMCID: PMC9993859 DOI: 10.1016/j.cellimm.2023.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Active tolerance to ingested dietary antigens forms the basis for oral immunotherapy to food allergens or autoimmune self-antigens. Alternatively, oral administration of anti-CD3 monoclonal antibody can be effective in modulating systemic immune responses without T cell depletion. Here we assessed the efficacy of full length and the F(ab')2 fragment of oral anti-CD3 to prevent anti-drug antibody (ADA) formation to clotting factor VIII (FVIII) protein replacement therapy in hemophilia A mice. A short course of low dose oral anti-CD3 F(ab')2 reduced the production of neutralizing ADAs, and suppression was significantly enhanced when oral anti-CD3 was timed concurrently with FVIII administration. Tolerance was accompanied by the early induction of FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+ populations of CD4+ T cells in the spleen and mesenteric lymph nodes. FoxP3+LAP+ Tregs expressing CD69, CTLA-4, and PD1 persisted in spleens of treated mice, but did not produce IL-10. Finally, we attempted to combine the anti-CD3 approach with oral intake of FVIII antigen (using our previously established method of using lettuce plant cells transgenic for FVIII antigen fused to cholera toxin B (CTB) subunit, which suppresses ADAs in part through induction of IL-10 producing FoxP3-LAP+ Treg). However, combining these two approaches failed to improve suppression of ADAs. We conclude that oral anti-CD3 treatment is a promising approach to prevention of ADA formation in systemic protein replacement therapy, albeit via mechanisms distinct from and not synergistic with oral intake of bioencapsulated antigen.
Collapse
Affiliation(s)
- Thais B Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Sherman
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kentaro Yamada
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sreevani Arisa
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Lillicrap
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Cox Terhorst
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|