1
|
Pu J, Yuan K, Tao J, Qin Y, Li Y, Fu J, Li Z, Zhou H, Tang Z, Li L, Gai X, Qin D. Glioblastoma multiforme: an updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov Oncol 2025; 16:731. [PMID: 40353925 PMCID: PMC12069213 DOI: 10.1007/s12672-025-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with high lethality. The typical treatment regimen includes post-surgical radiotherapy and temozolomide (TMZ) chemotherapy, which helps extend survival. Nevertheless, TMZ resistance occurs in approximately 50% of patients. This resistance is primarily associated with the expression of O6-methylguanine-DNA methyltransferase (MGMT), which repairs O6-methylguanine lesions generated by TMZ and is thought to be the major mechanism of drug resistance. Additionally, the mismatch repair and base excision repair pathways play crucial roles in TMZ resistance. Emerging studies also point to drug transport mechanisms, glioma stem cells, and the heterogeneous tumor microenvironment as additional influences on TMZ resistance in gliomas. A better understanding of these mechanisms is vital for developing new treatments to improve TMZ effectiveness, such as DNA repair inhibitors, inhibitors of multidrug transporting proteins, TMZ analogs, and combination therapies targeting multiple pathways. This article discusses the main resistance mechanisms and potential strategies to counteract resistance in GBM patients, aiming to broaden the understanding of these mechanisms for future research and to explore the therapeutic effects of traditional Chinese medicines and their active components in overcoming TMZ resistance.
Collapse
Affiliation(s)
- Jianlin Pu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Tao
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Yongxin Li
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Jing Fu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhong Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Haimei Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengxiu Tang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Li
- Department of Emergency Trauma Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xuesong Gai
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
2
|
Eckert T, Zobaer MS, Boulos J, Alexander-Bryant A, Baker TG, Rivers C, Das A, Vandergrift WA, Martinez J, Zukas A, Lindhorst SM, Patel S, Strickland B, Rowland NC. Immune Resistance in Glioblastoma: Understanding the Barriers to ICI and CAR-T Cell Therapy. Cancers (Basel) 2025; 17:462. [PMID: 39941829 PMCID: PMC11816167 DOI: 10.3390/cancers17030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumor, with fewer than 5% of patients surviving five years after diagnosis. The introduction of immune checkpoint inhibitors (ICIs), followed by chimeric antigen receptor (CAR) T-cell therapy, marked major advancements in oncology. Despite demonstrating efficacy in other blood and solid cancers, these therapies have yielded limited success in clinical trials for both newly diagnosed and recurrent GBM. A deeper understanding of GBM's resistance to immunotherapy is essential for enhancing treatment responses and translating results seen in other cancer models. OBJECTIVES In this review, we examine clinical trial outcomes involving ICIs and CAR-T for GBM patients and explore the evasive mechanisms of GBM and the tumor microenvironment. FINDINGS AND DISCUSSION Multiple clinical trials investigating ICIs in GBM have shown poor outcomes, with no significant improvement in progression-free survival (PFS) or overall survival (OS). Results from smaller case studies with CAR-T therapy have warranted further investigation. However, no large-scale trials or robust studies have yet established these immunotherapeutic approaches as definitive treatment strategies. Future research should shift focus from addressing the scarcity of functional T cells to exploiting the abundant myeloid-derived cells within the tumor microenvironment. CONCLUSIONS Translating these therapies into effective treatments for glioblastoma in humans remains a significant challenge. The highly immunosuppressive nature of GBM and its tumor microenvironment continue to hinder the success of these innovative immunotherapeutic approaches. Targeting the myeloid-derived compartment may lead to more robust and sustained immune responses.
Collapse
Affiliation(s)
- Thomas Eckert
- School of Medicine, University of South Carolina, Columbia, SC 29209, USA
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
| | - MS Zobaer
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Jessie Boulos
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.B.); (A.A.-B.)
| | | | - Tiffany G. Baker
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charlotte Rivers
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - William A. Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Jaime Martinez
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Alicia Zukas
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Scott M. Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sunil Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| | - Ben Strickland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathan C. Rowland
- MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.Z.); (T.G.B.); (N.C.R.)
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA; (A.D.); (W.A.V.); (J.M.); (A.Z.); (S.M.L.); (S.P.); (B.S.)
| |
Collapse
|
3
|
Koppers MJA, Monnikhof M, Meeldijk J, Koorman T, Bovenschen N. Chimeric antigen receptor-macrophages: Emerging next-generation cell therapy for brain cancer. Neurooncol Adv 2025; 7:vdaf059. [PMID: 40376682 PMCID: PMC12080554 DOI: 10.1093/noajnl/vdaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Adoptive cell-based therapy utilizing chimeric antigen receptor (CAR)-T technology holds promise in the field of neuro-oncology. Significant progress has been made in enhancing both the efficacy and safety of CAR-T-cell therapies. However, challenges such as the multifaceted immunosuppressive impact of the tumor microenvironment and insufficient CAR-T-cell infiltration into brain tumor sites remain a major hurdles. Emerging novel approaches utilizing CAR-macrophages (CAR-MACs) show potent results for brain tumor immunotherapy. CAR-MACs localize to tumor sites more readily, increase immune cell infiltrates, and demonstrate high antitumor efficacy by effectively eliminating tumor cells through mechanisms such as phagocytosis or efferocytosis. This review discusses the current advancements in CAR-MAC cell therapies for brain cancer, followed by an overview of research on manufacturing CAR-MACs for clinical application. We further highlight the potential future applications of CAR-MACs in combinatory therapies in the treatment of brain tumors.
Collapse
Affiliation(s)
- Myrthe J A Koppers
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthijs Monnikhof
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Bovenschen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Weller J, Potthoff A, Zeyen T, Schaub C, Duffy C, Schneider M, Herrlinger U. Current status of precision oncology in adult glioblastoma. Mol Oncol 2024; 18:2927-2950. [PMID: 38899374 PMCID: PMC11619805 DOI: 10.1002/1878-0261.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The concept of precision oncology, the application of targeted drugs based on comprehensive molecular profiling, has revolutionized treatment strategies in oncology. This review summarizes the current status of precision oncology in glioblastoma (GBM), the most common and aggressive primary brain tumor in adults with a median survival below 2 years. Targeted treatments without prior target verification have consistently failed. Patients with BRAF V600E-mutated GBM benefit from BRAF/MEK-inhibition, whereas targeting EGFR alterations was unsuccessful due to poor tumor penetration, tumor cell heterogeneity, and pathway redundancies. Systematic screening for actionable molecular alterations resulted in low rates (< 10%) of targeted treatments. Efficacy was observed in one-third and currently appears to be limited to BRAF-, VEGFR-, and mTOR-directed treatments. Advancing precision oncology for GBM requires consideration of pathways instead of single alterations, new trial concepts enabling rapid and adaptive drug evaluation, a focus on drugs with sufficient bioavailability in the CNS, and the extension of target discovery and validation to the tumor microenvironment, tumor cell networks, and their interaction with immune cells and neurons.
Collapse
Affiliation(s)
- Johannes Weller
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Thomas Zeyen
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Christina Schaub
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | - Cathrina Duffy
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| | | | - Ulrich Herrlinger
- Department of Neurooncology, Center for NeurologyUniversity Hospital BonnGermany
| |
Collapse
|
5
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Sarantopoulos A, Ene C, Aquilanti E. Therapeutic approaches to modulate the immune microenvironment in gliomas. NPJ Precis Oncol 2024; 8:241. [PMID: 39443641 PMCID: PMC11500177 DOI: 10.1038/s41698-024-00717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Immunomodulatory therapies, including immune checkpoint inhibitors, have drastically changed outcomes for certain cancer types over the last decade. Gliomas are among the cancers that have seem limited benefit from these agents, with most trials yielding negative results. The unique composition of the glioma immune microenvironment is among the culprits for this lack of efficacy. In recent years, several efforts have been made to improve understanding of the glioma immune microenvironment, aiming to pave the way for novel therapeutic interventions. In this review, we discuss some of the main components of the glioma immune microenvironment, including macrophages, myeloid-derived suppressor cells, neutrophils and microglial cells, as well as lymphocytes. We then provide a comprehensive overview of novel immunomodulatory agents that are currently in clinical development, namely oncolytic viruses, vaccines, cell-based therapies such as CAR-T cells and CAR-NK cells as well as antibodies and peptides.
Collapse
Affiliation(s)
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Elisa Aquilanti
- Center for Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
7
|
Pathak A, Palasalava S, Knott MV, Colon B, Ciervo E, Zhou Y, Mitchell J, Pumar OT, Wong HKA, Zhang L, Susic N, Shah KH, Kay K, Chin D, Johnson S, Cheng F, Lyssiotis CA, Watson DC, Ceccarelli M, Shah A, Wahl DR, Lathia JD, Bayik D. γ-aminobutyric acid receptor B signaling drives glioblastoma in females in an immune-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.603996. [PMID: 39091833 PMCID: PMC11291093 DOI: 10.1101/2024.07.18.603996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sex differences in immune responses impact cancer outcomes and treatment response, including in glioblastoma (GBM). However, host factors underlying sex specific immune-cancer interactions are poorly understood. Here, we identify the neurotransmitter γ-aminobutyric acid (GABA) as a driver of GBM-promoting immune response in females. We demonstrated that GABA receptor B (GABBR) signaling enhances L-Arginine metabolism and nitric oxide synthase 2 (NOS2) expression in female granulocytic myeloid-derived suppressor cells (gMDSCs). GABBR agonist and GABA analog promoted GBM growth in females in an immune-dependent manner, while GABBR inhibition reduces gMDSC NOS2 production and extends survival only in females. Furthermore, female GBM patients have enriched GABA transcriptional signatures compared to males, and the use of GABA analogs in GBM patients is associated with worse short-term outcomes only in females. Collectively, these results highlight that GABA modulates anti-tumor immune response in a sex-specific manner, supporting future assessment of GABA pathway inhibitors as part of immunotherapy approaches.
Collapse
Affiliation(s)
- Asmita Pathak
- Department of Molecular & Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sravya Palasalava
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Maxon V Knott
- Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Bruno Colon
- Department of Molecular & Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Erika Ciervo
- Università degli Studi di Napoli Federico II, Napoli, ITALY
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jonathan Mitchell
- Department of Molecular & Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oriana Teran Pumar
- Department of Molecular & Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Harrison K A Wong
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Nikola Susic
- Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Kristen Kay
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Diana Chin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sadie Johnson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | | | - Dionysios C Watson
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Molecular Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Ashish Shah
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Defne Bayik
- Department of Molecular & Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Zhang H, Zheng W, Chen X, Sa L, Huo Y, Zhang L, Shan L, Wang T. DNAJC1 facilitates glioblastoma progression by promoting extracellular matrix reorganization and macrophage infiltration. J Cancer Res Clin Oncol 2024; 150:315. [PMID: 38909166 PMCID: PMC11193832 DOI: 10.1007/s00432-024-05823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenjing Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xu Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Longqi Sa
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yi Huo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingling Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Tao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Ho WM, Chen CY, Chiang TW, Chuang TJ. A longer time to relapse is associated with a larger increase in differences between paired primary and recurrent IDH wild-type glioblastomas at both the transcriptomic and genomic levels. Acta Neuropathol Commun 2024; 12:77. [PMID: 38762464 PMCID: PMC11102269 DOI: 10.1186/s40478-024-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, which remains incurable and often recurs rapidly after initial therapy. While large efforts have been dedicated to uncover genomic/transcriptomic alternations associated with the recurrence of GBMs, the evolutionary trajectories of matched pairs of primary and recurrent (P-R) GBMs remain largely elusive. It remains challenging to identify genes associated with time to relapse (TTR) and construct a stable and effective prognostic model for predicting TTR of primary GBM patients. By integrating RNA-sequencing and genomic data from multiple datasets of patient-matched longitudinal GBMs of isocitrate dehydrogenase wild-type (IDH-wt), here we examined the associations of TTR with heterogeneities between paired P-R GBMs in gene expression profiles, tumor mutation burden (TMB), and microenvironment. Our results revealed a positive correlation between TTR and transcriptomic/genomic differences between paired P-R GBMs, higher percentages of non-mesenchymal-to-mesenchymal transition and mesenchymal subtype for patients with a short TTR than for those with a long TTR, a high correlation between paired P-R GBMs in gene expression profiles and TMB, and a negative correlation between the fitting level of such a paired P-R GBM correlation and TTR. According to these observations, we identified 55 TTR-associated genes and thereby constructed a seven-gene (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) prognostic model for predicting TTR of primary IDH-wt GBM patients using univariate/multivariate Cox regression analyses. The risk scores estimated by the model were significantly negatively correlated with TTR in the training set and two independent testing sets. The model also segregated IDH-wt GBM patients into two groups with significantly divergent progression-free survival outcomes and showed promising performance for predicting 1-, 2-, and 3-year progression-free survival rates in all training and testing sets. Our findings provide new insights into the molecular understanding of GBM progression at recurrence and potential targets for therapeutic treatments.
Collapse
Affiliation(s)
- Wei-Min Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Sun C, Wang S, Ma Z, Zhou J, Ding Z, Yuan G, Pan Y. Neutrophils in glioma microenvironment: from immune function to immunotherapy. Front Immunol 2024; 15:1393173. [PMID: 38779679 PMCID: PMC11109384 DOI: 10.3389/fimmu.2024.1393173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.
Collapse
Affiliation(s)
- Chao Sun
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Siwen Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhen Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinghuan Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zilin Ding
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
12
|
Huang M, Liu Y, Peng J, Cheng Y. Causal effects of immune cells in glioblastoma: a Bayesian Mendelian Randomization study. Front Neurol 2024; 15:1375723. [PMID: 38742049 PMCID: PMC11089213 DOI: 10.3389/fneur.2024.1375723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Background Glioblastoma (GBM) is a highly malignant brain tumor, and immune cells play a crucial role in its initiation and progression. The immune system's cellular components, including various types of lymphocytes, macrophages, and dendritic cells, among others, engage in intricate interactions with GBM. However, the precise nature of these interactions remains to be conclusively determined. Method In this study, a comprehensive two-sample Mendelian Randomization (MR) analysis was conducted to elucidate the causal relationship between immune cell features and the incidence of GBM. Utilizing publicly available genetic data, we investigated the causal associations between 731 immune cell signatures and the risk of GBM. Subsequently, we conducted a reverse Mendelian randomization analysis to rule out reverse causation. Finally, it was concluded that there is a unidirectional causal relationship between three subtypes of immune cells and GBM. Comprehensive sensitivity analyses were employed to validate the results robustness, heterogeneity, and presence of horizontal pleiotropy. To enhance the accuracy of our results, we concurrently subjected them to Bayesian analysis. Results After conducting MR analyses, we identified 10 immune phenotypes that counteract glioblastoma, with the most protective being FSC-A on Natural Killer T cells (OR = 0.688, CI = 0.515-0.918, P = 0.011). Additionally, we found 11 immune cell subtypes that promote GBM incidence, including CD62L- HLA DR++ monocyte % monocyte (OR = 1.522, CI = 1.004-2.307, P = 0.048), CD4+CD8+ T cell % leukocyte (OR = 1.387, CI = 1.031-1.866, P = 0.031). Following the implementation of reverse MR analysis, where glioblastoma served as the exposure variable and the outcomes included 21 target immune cell subtypes, we discerned that only three cell subtypes (CD45 on CD33+ HLA DR+ CD14dim, CD33+ HLA DR+ Absolute Count, and IgD+ CD24+ B cell Absolute Count) exhibited a unidirectional causal association with glioblastoma. Conclusion Our study has genetically demonstrated the close relationship between immune cells and GBM, guiding future clinical research.
Collapse
Affiliation(s)
- Mingsheng Huang
- Department of Neurosurgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yiheng Liu
- Department of Cardiology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Peng
- Department of Neurosurgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Frederico SC, Sharma N, Darling C, Taori S, Dubinsky AC, Zhang X, Raphael I, Kohanbash G. Myeloid cells as potential targets for immunotherapy in pediatric gliomas. Front Pediatr 2024; 12:1346493. [PMID: 38523840 PMCID: PMC10960498 DOI: 10.3389/fped.2024.1346493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) including pediatric glioblastoma (pGBM) are highly aggressive pediatric central nervous system (CNS) malignancies. pGBM comprises approximately 3% of all pediatric CNS malignancies and has a 5-year survival rate of approximately 20%. Surgical resection and chemoradiation are often the standard of care for pGBM and pHGG, however, even with these interventions, survival for children diagnosed with pGBM and pHGG remains poor. Due to shortcomings associated with the standard of care, many efforts have been made to create novel immunotherapeutic approaches targeted to these malignancies. These efforts include the use of vaccines, cell-based therapies, and immune-checkpoint inhibitors. However, it is believed that in many pediatric glioma patients an immunosuppressive tumor microenvironment (TME) possess barriers that limit the efficacy of immune-based therapies. One of these barriers includes the presence of immunosuppressive myeloid cells. In this review we will discuss the various types of myeloid cells present in the glioma TME, including macrophages and microglia, myeloid-derived suppressor cells, and dendritic cells, as well as the specific mechanisms these cells can employ to enable immunosuppression. Finally, we will highlight therapeutic strategies targeted to these cells that are aimed at impeding myeloid-cell derived immunosuppression.
Collapse
Affiliation(s)
- Stephen C. Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nikhil Sharma
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Corbin Darling
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Suchet Taori
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY, United States
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Zhang Y, Song Y, Wang X, Shi M, Lin Y, Tao D, Han S. An NFAT1-C3a-C3aR Positive Feedback Loop in Tumor-Associated Macrophages Promotes a Glioma Stem Cell Malignant Phenotype. Cancer Immunol Res 2024; 12:363-376. [PMID: 38289255 DOI: 10.1158/2326-6066.cir-23-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
Extensive infiltration by tumor-associated macrophages (TAM) in combination with myeloid-derived suppressor cells constitute the immunosuppressive microenvironment and promote the malignant phenotype of gliomas. The aggressive mesenchymal (MES)-subtype glioma stem cells (GSC) are prominent in the immunosuppressive microenvironment of gliomas. However, the underlying immune-suppressive mechanisms are still unknown. The current study showed that the antitumor immune microenvironment was activated in glioma in Nfat1-/- mice, suggesting induction of the immune-suppressive microenvironment by nuclear factor of activated T cells-1 (NFAT1). In TAMs, NFAT1 could upregulate the transcriptional activity of complement 3 (C3) and increase the secretion of C3a, which could then bind to C3aR and promote M2-like macrophage polarization by activating TIM-3. Simultaneously, C3a/C3aR activated the Ca2+-NFAT1 pathway, forming a positive feedback loop for the M2-like polarization of TAMs, which further promoted the MES transition of GSCs. Finally, disruption of this feedback loop using a C3aR inhibitor significantly inhibited glioma growth both in vitro and in vivo. The current study demonstrated that a NFAT1-C3a-C3aR positive feedback loop induces M2-like TAMs and further promotes the malignant phenotype of GSCs, which might be the potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Dongxia Tao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
15
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24032020. [PMID: 36768342 PMCID: PMC9917056 DOI: 10.3390/ijms24032020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Primary CNS neoplasms are responsible for considerable mortality and morbidity, and many therapies directed at primary brain tumors have proven unsuccessful despite their success in preclinical studies. Recently, the tumor immune microenvironment has emerged as a critical aspect of primary CNS neoplasms that may affect their malignancy, prognosis, and response to therapy across patients and tumor grades. This review covers the tumor microenvironment of various primary CNS neoplasms, with a focus on glioblastoma and meningioma. Additionally, current therapeutic strategies based on elements of the tumor microenvironment, including checkpoint inhibitor therapy and immunotherapeutic vaccines, are discussed.
Collapse
|
17
|
Frederico SC, Darling C, Bielanin JP, Dubinsky AC, Zhang X, Hadjipanayis CG, Kohanbash G. Neoadjuvant immune checkpoint inhibition in the management of glioblastoma: Exploring a new frontier. Front Immunol 2023; 14:1057567. [PMID: 36875096 PMCID: PMC9981631 DOI: 10.3389/fimmu.2023.1057567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Brain tumors are one of the leading causes of cancer related death in both the adult and pediatric patient population. Gliomas represent a cohort of brain tumors derived from glial cell lineages which include astrocytomas, oligodendrogliomas and glioblastomas (GBMs). These tumors are known to grow aggressively and have a high lethality with GBM being the most aggressive tumor in this group. Currently, few treatment options exist for GBM outside of surgical resection, radiation therapy and chemotherapy. While these measures have been shown to marginally improve patient survival, patients, especially those diagnosed with GBM, often experience a recurrence of their disease. Following disease recurrence, treatment options become more limited as additional surgical resections can pose life threatening risk to the patient, patients may be ineligible for additional radiation, and the recurrent tumor may be resistant to chemotherapy. Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy as many patients with cancers residing outside the central nervous system (CNS) have experienced a survival benefit from this treatment modality. It has often been observed that this survival benefit is increased following neoadjuvant administration of immune checkpoint inhibitors as tumor antigen is still present in the patient which enables a more robust anti-tumor immune response. Interestingly, results for ICI-based studies for patients with GBM have been largely disappointing which is a stark contrast from the success this treatment modality has had in non-central nervous system cancers. In this review, we will discuss the various benefits of neoadjuvant immune checkpoint inhibition such as how this approach reduces tumor burden and allows for a greater induction of an anti-tumor immune response. Additionally, we will discuss several non-CNS cancers where neoadjuvant immune checkpoint inhibition has been successful and discuss why we believe this approach may provide a survival benefit for GBM patients. We hope this manuscript will foster future studies aimed at exploring whether this approach may be beneficial for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Stephen C Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corbin Darling
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - John P Bielanin
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Bilotta MT, Antignani A, Fitzgerald DJ. Managing the TME to improve the efficacy of cancer therapy. Front Immunol 2022; 13:954992. [PMID: 36341428 PMCID: PMC9630343 DOI: 10.3389/fimmu.2022.954992] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
The tumor microenvironment (TME) influences tumor growth, metastatic spread and response to treatment. Often immunosuppression, mediated by the TME, impairs a beneficial response. The complexity of the tumor composition challenges our abilities to design new and more effective therapies. Going forward we will need to 'manage' the content and or functionality of the TME to improve treatment outcomes. Currently, several different kinds of treatments are available to patients with cancer: there are the traditional approaches of chemotherapy, radiation and surgery; there are targeted agents that inhibit kinases associated with oncogenic pathways; there are monoclonal antibodies that target surface antigens often delivering toxic payloads or cells and finally there are antibodies and biologics that seek to overcome the immunosuppression caused by elements within the TME. How each of these therapies interact with the TME is currently under intense and widespread investigation. In this review we describe how the TME and its immunosuppressive components can influence both tumor progression and response to treatment focusing on three particular tumor types, classic Hodgkin Lymphoma (cHL), Pancreatic Ductal Adenocarcinoma (PDAC) and Glioblastoma Multiforme (GBM). And, finally, we offer five approaches to manipulate or manage the TME to improve outcomes for cancer patients.
Collapse
|