1
|
Huang M, Huang Z, Miao S, Chen X, Tan Y, Zhou Y, Wang S, Shi J. Bioinformatics Analysis of coagulation-related genes in lung adenocarcinoma: unveiling prognostic indicators and treatment pathways. Sci Rep 2025; 15:4972. [PMID: 39929884 PMCID: PMC11811422 DOI: 10.1038/s41598-025-87669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Lung adenocarcinoma (LUAD) frequently precipitates a hypercoagulable state, resulting in venous thromboembolism and associated hemostatic complications. Furthermore, the coagulation cascade holds a pivotal role within the tumor microenvironment (TME) of LUAD. Utilizing unsupervised clustering of coagulation-related genes (CRG) and integrating clinical attributes, distinctions and correlations in clustering across various groups were assessed. Principal component analysis (PCA) was employed to derive the CRGscore for LUAD patients. Subsequently, a prognostic signature was established to contrast the impacts of immunological and pharmacological treatments across groups. The expression of PIK3CA, posited as a potential biomarker, was corroborated via immunohistochemistry(IHC) and Western blotting. This research delineated pronounced variances in immune signatures and prognostic categorizations among four coagulation-related subtypes, and delved into their associations with three gene cluster subtypes. A prognostic model based on coagulation-related scores was formulated for risk stratification and prognosis estimation. Disparities in immune infiltration, treatment modalities, and drug responsiveness among risk cohorts were discerned. Notably, an augmented expression of the coagulation-associated gene PIK3CA was observed in tumor samples. Coagulatory function is intimately linked with LUAD and its immune microenvironment, offering predictive potential for LUAD survival prognosis. Specifically, subgroups manifesting elevated PIK3CA expression might serve as foundational indicators for optimal treatment selection.
Collapse
Affiliation(s)
- Minliang Huang
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Shichen Miao
- Medical School of Nantong University, Nantong, 226001, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong, 226001, China
| | - Yue Tan
- Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Hand Surgery Research Center, Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shuo Wang
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Medical School, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
- Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Malumbres M, Villarroya-Beltri C. Mosaic variegated aneuploidy in development, ageing and cancer. Nat Rev Genet 2024; 25:864-878. [PMID: 39169218 DOI: 10.1038/s41576-024-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 08/23/2024]
Abstract
Mosaic variegated aneuploidy (MVA) is a rare condition in which abnormal chromosome counts (that is, aneuploidies), affecting different chromosomes in each cell (making it variegated) are found only in a certain number of cells (making it mosaic). MVA is characterized by various developmental defects and, despite its rarity, presents a unique clinical scenario to understand the consequences of chromosomal instability and copy number variation in humans. Research from patients with MVA, genetically engineered mouse models and functional cellular studies have found the genetic causes to be mutations in components of the spindle-assembly checkpoint as well as in related proteins involved in centrosome dynamics during mitosis. MVA is accompanied by tumour susceptibility (depending on the genetic basis) as well as cellular and systemic stress, including chronic immune response and the associated clinical implications.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cancer Cell Cycle Group, Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona, Barcelona, Spain.
| | | |
Collapse
|
3
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
5
|
Qian ST, Xie FF, Zhao HY, Liu QS, Cai DL. Prospects in the application of ultrasensitive chromosomal aneuploidy detection in precancerous lesions of gastric cancer. World J Gastrointest Surg 2024; 16:6-12. [PMID: 38328310 PMCID: PMC10845279 DOI: 10.4240/wjgs.v16.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor within the digestive system, with over 40% of new cases and deaths related to GC globally occurring in China. Despite advancements in treatment modalities, such as surgery supplemented by adjuvant radiotherapy or chemotherapeutic agents, the prognosis for GC remains poor. New targeted therapies and immunotherapies are currently under investigation, but no significant breakthroughs have been achieved. Studies have indicated that GC is a heterogeneous disease, encompassing multiple subtypes with distinct biological characteristics and roles. Consequently, personalized treatment based on clinical features, pathologic typing, and molecular typing is crucial for the diagnosis and management of precancerous lesions of gastric cancer (PLGC). Current research has categorized GC into four subtypes: Epstein-Barr virus-positive, microsatellite instability, genome stability, and chromosome instability (CIN). Technologies such as multi-omics analysis and gene sequencing are being employed to identify more suitable novel testing methods in these areas. Among these, ultrasensitive chromosomal aneuploidy detection (UCAD) can detect CIN at a genome-wide level in subjects using low-depth whole genome sequencing technology, in conjunction with bioinformatics analysis, to achieve qualitative and quantitative detection of chromosomal stability. This editorial reviews recent research advancements in UCAD technology for the diagnosis and management of PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
6
|
Chen Y, Li Y, Zhou B. Identification of the Roles of Coagulation-related Signature and its Key Factor RABIF in Hepatoma Cell Malignancy. Recent Pat Anticancer Drug Discov 2024; 19:695-710. [PMID: 37644748 DOI: 10.2174/1574892819666230829151148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hepatoma is a high morbidity and mortality cancer, and coagulation is a potential oncogenic mechanism for hepatoma development. OBJECTIVE In this study, we aimed to reveal the role of coagulation in hepatoma. METHODS We applied the LASSO to construct a coagulation-related risk score (CRS) and a clinical nomogram with independent validation. The heterogeneity of various aspects, including functional enrichment, SNV, CN, immunocyte infiltration, immune pathways, immune checkpoint, and genomic instability indexes, was evaluated. Besides, the prognostic value of the CRS genes was tested. We selected the critical risky gene related to coagulation from the LASSO coefficients, for which we applied transwell and clone formation assays to confirm its roles in hepatoma cell migration and clone formation ability, respectively. RESULTS The CRS and the nomogram predicted patients' survival with good accuracy in both two datasets. The high-CRS group was associated with higher cell cycle, DNA repair, TP53 mutation rates, amplification, and lower deletion rates at chromosome 1. For immunocyte infiltration, we noticed increased Treg infiltration and globally upregulated immune checkpoints and genomic instability indexes. Additionally, every single CRS gene affected the patient's survival. Finally, we observed that RABIF was the riskiest gene in the CRS. Its knockdown suppressed hepatoma cell migration and clone formation capability, which could be rescued by RABIF overexpression. CONCLUSION We built a robust CRS with great potential as a prognosis and immunotherapeutic indicator. Importantly, we identified RABIF as an oncogene, promoting hepatoma cell migration and clone formation, revealing underlying pathological mechanisms, and providing novel therapeutic targets for hepatoma treatment.
Collapse
Affiliation(s)
- Yanying Chen
- Department of Hematology, The Second Xiangya Hospital, Center South University, Changsha, Hunan Province, 410011, China
| | - Yin Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bingyi Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Center South University, Changsha, Hunan Province, 410011, China
| |
Collapse
|
7
|
Chu H, Jin Z, Cheng JN, Jia Q, Zhu B, Cai H. Chromothripsis is correlated with reduced cytotoxic immune infiltration and diminished responsiveness to checkpoint blockade immunotherapy. Theranostics 2023; 13:1443-1453. [PMID: 36923532 PMCID: PMC10008737 DOI: 10.7150/thno.81350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/13/2023] Open
Abstract
Background: Chromothripsis caused massive, clustered genomic rearrangements is prevalent in cancer and is considered a new paradigm for tumorigenesis and progression. In this study, we investigated the association among chromothripsis, anti-tumor immune responses, and responsiveness to immune checkpoint blockade (ICB). Methods: Quantification of immune cell infiltration and functional enrichment of immune-related signaling pathways were performed in the discovery set (n = 9403) and the validation set (n = 1140). we investigated the association between chromothripsis and anti-tumor immune responses. In the immunotherapy cohort, copy number alteration-based chromothripsis scores (CPSs) were introduced to assess the extent of chromothripsis to evaluate its association with responsiveness to ICB. Results: In the discovery set and the validation set, the ratios of CD8+ T cells to Tregs, TAMs, and MDSCs were significantly lower in tumors with chromothripsis (P = 1.5 × 10-13, P = 5.4 × 10-8, and P = 1.2 × 10-4, respectively, TCGA; P = 1.0 × 10-13, P = 3.6 × 10-15, and P = 3.3 × 10-3, respectively, PCAWG). The relevant pathways underlying the antitumor immune effect were significantly enriched in tumors without chromothripsis. Chromothripsis can be used as an independent predictor, and patients with low-CPSs experienced longer overall survival (OS) after immunotherapy [HR, 1.90; 95% confidence interval, 1.10-3.28; P = 0.019]. Conclusions: Our findings highlight the reduced cytotoxic immune infiltration in tumors with chromothripsis and enhanced immunosuppression in the tumor microenvironment. Chromothripsis can thus be used as a potential indicator to help identify patients who will respond to ICB, which could complement established biomarkers.
Collapse
Affiliation(s)
- Han Chu
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China.,Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Jin
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Abdusalam AAA. In-silico identification of novel inhibitors for human Aurora kinase B form the ZINC database using molecular docking-based virtual screening. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.82977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Aurora kinase enzymes play critical functions in mammals. Aurora kinases are mitotic regulators that are involved in a variety of processes during cell division. The overexpression of these enzymes is associated with tumour formation and is symptomatic of clinical circumstances in cancer patients who have been diagnosed.
Materials and methods: The current study reports an in-silico virtual screening (VS) and molecular docking analysis of 2500 compounds retrieved from the ZINC database and five current clinical trial compounds against Aurora Kinase B using AutoDock Vina to identify potential inhibitors.
Results and discussion: The top six compounds that resulted from the screening were ZINC00190959, ZINC07889110, ZINC0088285, ZINC01404326, ZINC00882846 and ZINC08813187, which showed lower free energy of binding (FEB) against the target protein binding pocket. The FEB were as follows: -11.92, -11.85, -11.46, -11.33, -11.21 and -11.1 kcal/mol, using AutoDock, and -11.7, -11.5, -11.2, -11.0, -10.8 and -10.6 kcal/mol for AutoDock Vina, respectively. These findings were superior to those obtained with the co-crystallized ligand VX-680, with a -7.5 kcal/mol and the current clinical trial drug. Finally, using a VS and molecular docking approach, novel Aurora kinase B inhibitors were effectively identified from the ZINC database fulfilling the Lipinski rule of five with low FEB and functional molecular interactions with the target protein.
Conclusion: The findings suggest that the six compounds could be used as a potential agent for cancer treatments.
Graphical abstract
Collapse
|
9
|
Jungles KM, Holcomb EA, Pearson AN, Jungles KR, Bishop CR, Pierce LJ, Green MD, Speers CW. Updates in combined approaches of radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Front Oncol 2022; 12:1022542. [PMID: 36387071 PMCID: PMC9643771 DOI: 10.3389/fonc.2022.1022542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body’s response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.
Collapse
Affiliation(s)
- Kassidy M. Jungles
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Erin A. Holcomb
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ashley N. Pearson
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kalli R. Jungles
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - Caroline R. Bishop
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| |
Collapse
|