1
|
Ye X, Ren D, Chen Q, Shen J, Wang B, Wu S, Zhang H. Resolution of inflammation during rheumatoid arthritis. Front Cell Dev Biol 2025; 13:1556359. [PMID: 40206402 PMCID: PMC11979130 DOI: 10.3389/fcell.2025.1556359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes synovial joint inflammation as well as bone destruction and erosion, typically characterized by joint pain, swelling, and stiffness, with complications and persistent pain after remission posing a significant health burden for RA patients. The etiology of RA has not yet been fully elucidated, but a large number of studies have shown that the initiation of inflammation in RA is closely related to T-cell activation, the production of a variety of pro-inflammatory cytokines, macrophage M1/M2 imbalance, homeostatic imbalance of the intestinal flora, fibroblast-like synoviocytes (FLSs) and synovial tissue macrophages (STMs) in the synovial lumen of joints that exhibit an aggressive phenotype. While the resolution of RA is less discussed, therefore, we provided a systematic review of the relevant remission mechanisms including blocking T cell activation, regulating macrophage polarization status, modulating the signaling pathway of FLSs, modulating the subpopulation of STMs, and inhibiting the relevant inflammatory factors, as well as the probable causes of persistent arthritis pain after the remission of RA and its pain management methods. Achieving resolution in RA is crucial for improving the quality of life and long-term prognosis of patients. Thus, understanding these mechanisms provide novel potential for further drug development and treatment of RA.
Collapse
Affiliation(s)
- Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Qingyuan Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Jiquan Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Lishui University, Lishui, China
- Wenzhou Medical University Affiliated Lishui Hospital, Lishui, China
| | - Bo Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Lishui University, Lishui, China
- Wenzhou Medical University Affiliated Lishui Hospital, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| |
Collapse
|
2
|
Wang C, Du Y, Lu C, Bi L, Ding Y, Fan W. The role of SFRP1 in human dermal papilla cell growth and its potential molecular mechanisms as a target in regenerative therapy. Regen Ther 2025; 28:161-168. [PMID: 39802633 PMCID: PMC11718413 DOI: 10.1016/j.reth.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background Secreted frizzled-related protein 1 (SFRP1) inhibits Wnt signaling and is differentially expressed in human hair dermal papilla cells (DPCs). However, the specific effect of SFRP1 on cell function remains unclear. Telomerase reverse transcriptase (TERT) representing telomerase activity was found highly active around the hair dermal papilla. TERT levels can be enhanced by activation of the Wnt pathway in cancer cells and embryonic stem cells. Whether this regulatory mechanism is still present in DPCs has not been studied so far. Methods In this study, DNA plasmids and siRNAs were constructed against the SFRP1 gene and transfected into DPCs cultured in vitro. We detected the viability, proliferation, and migration of DPCs by Calcein/PI fluorescence, CCK-8, trans-well, or cell scratch experiments, and the expression of potential target genes was also determined through quantitative detection of RNA and protein. Results The results demonstrate a significant difference in SFRP1 levels from the control group, suggesting successful transfection of the DNA plasmid and siRNA of SFRP1 into IDPCs. Also, SFRP1 regulates the cell proliferation capacity of IDPCs and reduces their migration functions. The DPCs' living activity, proliferation, and migration function exhibited a negative correlation with the level of SFRP1. SFPR1 also inhibits the protein or RNA expression of β-catenin and TERT in DPCs. Conclusion It was proven that in human DPCs, different levels of SFRP1 change how cells work and control Wnt/β-catenin signaling or telomerase activity. This means that blocking SFRP1 could become a new way to treat hair loss diseases in the future.
Collapse
Affiliation(s)
- Chaofan Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210000, Jiangsu, China
| | - Yimei Du
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Changpei Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Lingbo Bi
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yunbu Ding
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Weixin Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| |
Collapse
|
3
|
Zhang J, Yang Z, Peng F, Zhang J, Zhu J. ERG transcriptionally activates SFRP1 to promote apoptosis of keloid fibroblasts and inhibit epithelial-mesenchymal transition and fibrosis through the Wnt3a/β-catenin pathway. Arch Dermatol Res 2025; 317:467. [PMID: 39987226 DOI: 10.1007/s00403-025-03902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Keloids are benign skin tumors characterized by excessive fibrosis. Secreted frizzled-related protein 1 (SFRP1) has been linked to fibrosis regulation. Understanding SFRP1's role in keloid fibroblasts (KFs) could provide insights into the molecular mechanisms driving keloid progression and offer new therapeutic avenues. mRNA expression of SFRP1 and ETS-related gene 1 (ERG) was assessed via quantitative real-time polymerase chain reaction. Protein levels were determined by Western blotting. Cell viability was evaluated using cell counting kit-8 assay. Cell apoptosis was detected by flow cytometry. Cell invasion was assessed by transwell assay, and cell migration by wound-healing assay. Chromatin immunoprecipitation and dual-luciferase reporter assays were performed to elucidate the interaction of ERG and SFRP1. SFRP1 was downregulated in keloid tissues and KFs. Overexpression of SFRP1 induced KF apoptosis and inhibited epithelial-mesenchymal transition and fibrosis, concurrent with inactivation of the Wnt3a/β-catenin pathway. ERG was found to transcriptionally activate SFRP1. ERG overexpression promoted KF apoptosis and inhibited epithelial-mesenchymal transition and fibrosis by regulating SFRP1. Wnt3a/β-catenin pathway inactivation. Moreover, the inhibitory effects of ERG overexpression on the protein expression of Wnt3a and β-catenin were attenuated after SFRP1 knockdown. ERG's transcriptional activation of SFRP1 promoted KF apoptosis and inhibited epithelial-mesenchymal transition and fibrosis through the Wnt3a/β-catenin pathway, highlighting a potential therapeutic strategy for keloid management.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Clinical Medicine, Zhengzhou Shuqing Medical College, Yuyuan, Hanghai Road, Erqi District, Zhengzhou City, Henan Province, 450052, China.
| | - Zheng Yang
- Department of Clinical Medicine, Zhengzhou Shuqing Medical College, Yuyuan, Hanghai Road, Erqi District, Zhengzhou City, Henan Province, 450052, China
| | - Fang Peng
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, 450052, China
| | - Jianhua Zhang
- Department of Hand and Foot Microscopy and Wound Repair Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jiangtao Zhu
- Department of Clinical Medicine, Zhengzhou Shuqing Medical College, Yuyuan, Hanghai Road, Erqi District, Zhengzhou City, Henan Province, 450052, China
| |
Collapse
|
4
|
Periyakoil PK, Smith MH, Kshirsagar M, Ramirez D, DiCarlo EF, Goodman SM, Rudensky AY, Donlin LT, Leslie CS. Deep topic modeling of spatial transcriptomics in the rheumatoid arthritis synovium identifies distinct classes of ectopic lymphoid structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631928. [PMID: 39829741 PMCID: PMC11741433 DOI: 10.1101/2025.01.08.631928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Single-cell RNA sequencing studies have revealed the heterogeneity of cell states present in the rheumatoid arthritis (RA) synovium. However, it remains unclear how these cell types interact with one another in situ and how synovial microenvironments shape observed cell states. Here, we use spatial transcriptomics (ST) to define stable microenvironments across eight synovial tissue samples from six RA patients and characterize the cellular composition of ectopic lymphoid structures (ELS). To identify disease-relevant cellular communities, we developed DeepTopics, a scalable reference-free deconvolution method based on a Dirichlet variational autoencoder architecture. DeepTopics identified 22 topics across tissue samples that were defined by specific cell types, activation states, and/or biological processes. Some topics were defined by multiple colocalizing cell types, such as CD34+ fibroblasts and LYVE1+ macrophages, suggesting functional interactions. Within ELS, we discovered two divergent cellular patterns that were stable across ELS in each patient and typified by the presence or absence of a "germinal-center-like" topic. DeepTopics is a versatile and computationally efficient method for identifying disease-relevant microenvironments from ST data, and our results highlight divergent cellular architectures in histologically similar RA synovial samples that have implications for disease pathogenesis.
Collapse
Affiliation(s)
- Preethi K Periyakoil
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medical College, New York, NY 10021, USA
| | - Melanie H Smith
- Weill Cornell Medical College, New York, NY 10021, USA
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | | | - Daniel Ramirez
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Edward F DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Susan M Goodman
- Weill Cornell Medical College, New York, NY 10021, USA
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program at Sloan Kettering Institute, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY,10065, USA
| | - Laura T Donlin
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
5
|
Alhilfi ASN, Afrisham R, Sefidan AM, Fadaei R, Moradi N, Saed L, Einollahi N. A positive correlation of serum SFRP1 levels with the risk of developing type 2 diabetes mellitus: a case-control study. Lab Med 2024; 55:739-744. [PMID: 38801722 DOI: 10.1093/labmed/lmae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Secreted frizzled-related protein 1 (SFRP1) is an adipokine whose production is significantly altered in metabolic disorders. Considering the relationship between dysfunction of Wnt/β-catenin signaling and metabolic disorders as well as the inhibitory effects of SFRP1 on this signaling pathway, the present work aimed to investigate the correlation between serum SFRP1 levels and type 2 diabetes mellitus (T2DM) and its developing risk factors for the first time. METHODS This case-control study measured serum levels of SFRP1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, adiponectin, and fasting insulin using enzyme-linked immunosorbent assay kits in 80 T2DM patients and 80 healthy individuals. Biochemical parameters were determined using the AutoAnalyzer instrument. RESULTS The T2DM group had higher levels of SFRP1 compared with the controls (146.8100 ± 43.61416 vs 81.9531 ± 32.78545 pg/mL; P < .001). There was a positive correlation between SFRP1 and insulin (r = 0.327, P = .003), TNF-α (r = 0.420, P < .001) as well as homeostatic model assessment for insulin resistance (r = 0.328, P = .003) in the T2DM group. In addition, 10-unit changes in SFRP1 levels showed the risk of T2DM in both the unadjusted (odds ratio [OR] [95% CI] = 1.564 [1.359-1.800]) and adjusted models accounting for age, gender, and body mass index (OR [95% CI] = 1.564 [1.361-1.799]; P < .001). A cut-off value of SFRP1 (105.83 pg/mL) was identified to distinguish between the T2DM patients and the healthy subjects, with sensitivity of 75.0% and specificity of 80.0%. CONCLUSION According to our research, there was a significant and positive link between the amount of SFRP1 and the likelihood of developing T2DM as well as the related factors like insulin resistance index and TNF-α. These results indicated that SFRP1 might have a potential role in the development of T2DM.
Collapse
Affiliation(s)
- Ahmed Salim Najm Alhilfi
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Monadi Sefidan
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacology, Vanderbilt University, Nashville, TN, US
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Lotfollah Saed
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nahid Einollahi
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang Y, Tao H, Zhang L, Li X, Shi Y, Sun W, Chen W, Zhao Y, Wang L, Yang X, Gu C. Battling pain from osteoarthritis: causing novel cell death. Acta Biochim Biophys Sin (Shanghai) 2024; 57:169-181. [PMID: 39463202 PMCID: PMC11877141 DOI: 10.3724/abbs.2024189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Osteoarthritis (OA) is a significant contributor to pain and disability worldwide. Pain is the main complaint of OA patients attending the clinic and has a large impact on their quality of life and economic standards. However, existing treatments for OA-related pain have not been shown to achieve good relief. The main focus is on preventing and slowing the progression of OA so that the problem of OA pain can be resolved. Pain caused by OA is complex, with the nature, location, duration, and intensity of pain changing as the disease progresses. Previous research has highlighted the role of various forms of cell death, such as apoptosis and necrosis, in the progression of pain in OA. Emerging studies have identified additional forms of novel cell death, such as pyroptosis, ferroptosis, and necroptosis that are linked to pain in OA. Different types of cell death contribute to tissue damage in OA by impacting inflammatory responses, reactive oxygen species (ROS) production, and calcium ion levels, ultimately leading to the development of pain. Evidence suggests that targeting novel types of cell death could help alleviate pain in OA patients. This review delves into the complex mechanisms of OA pain, explores the relationship between different modes of novel cell death and pain, and proposes novel cell death as a viable strategy for the treatment of these conditions, with the goal of providing scientific references for the development of future OA pain treatments and drugs.
Collapse
Affiliation(s)
- Yuheng Zhang
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Huaqiang Tao
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou226000China
| | - Liyuan Zhang
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Xueyan Li
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Yi Shi
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Wen Sun
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Wenlong Chen
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Yuhu Zhao
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversitySuzhou226000China
| | - Liangliang Wang
- Department of Orthopedicsthe Affiliated Changzhou Second People’s Hospital of
Nanjing Medical UniversityChangzhou213003China
| | - Xing Yang
- Orthopedics and Sports Medicine CenterSuzhou Municipal HospitalNanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| | - Chengyong Gu
- Anesthesiology DepartmentSuzhou Municipal Hospital (North District)Nanjing Medical University Affiliated Suzhou HospitalSuzhou226000China
| |
Collapse
|
7
|
Wang G, Xu YL, Zhang XH, Tang L, Li Y. LncRNA HOTTIP regulates TLR4 promoter methylation by recruiting H3K4 methyltransferase MLL1 to affect apoptosis and inflammatory response of fibroblast-like synoviocyte in rheumatoid arthritis. Kaohsiung J Med Sci 2024; 40:335-347. [PMID: 38363110 DOI: 10.1002/kjm2.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, and the role of HOXA transcript at the distal tip (HOTTIP) in its pathogenesis remains underexplored. This study investigates the mechanism by which HOTTIP influences apoptosis and the inflammatory response of fibroblast-like synoviocytes (FLS). An RA mouse model was established, and clinical scores were analyzed. Pathological changes in synovial tissues, bone mineral density (BMD) of the paws, serum tartrate-resistant acid phosphatase (TRAP) activity, and TNF-α and IL-1β levels were assessed. FLS were transfected, and cell proliferation and apoptosis were examined. The RNA-pull-down assay determined HOTTIP's interaction with mixed-lineage leukemia 1 (MLL1), while RNA immunoprecipitation assay measured HOTTIP expression pulled down by MLL1. The levels of MLL1 and toll-like receptor 4 (TLR4) after MLL1 overexpression based on HOTTIP silencing were determined. Chromatin immunoprecipitation (ChIP) was performed with H3K4me3 as an antibody, followed by the evaluation of TLR4 expression. HOTTIP expression was elevated in RA mouse synovial tissues. Inhibition of HOTTIP led to reduced clinical scores, inflammatory infiltration, synovial hyperplasia, TRAP activity, and TNF-α and IL-1β levels, along with increased BMD. In vitro Interference with HOTTIP suppressed RA-FLS apoptosis and inflammation. HOTTIP upregulated TLR4 expression by recruiting MLL1 to facilitate TLR4 promoter methylation. MLL1 overexpression reversed HOTTIP silencing-mediated repression of RA-FLS apoptosis. Activation of H3K4 methylation counteracted HOTTIP knockout, ameliorating the inflammatory response. HOTTIP regulates TLR4 expression by recruiting MLL1, leading to TLR4 promoter methylation, thereby suppressing RA-FLS proliferation and inducing cell apoptosis and inflammatory response in RA.
Collapse
Affiliation(s)
- Guan Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Sichuan Provincial Laboratory of Orthopaedic Engineering Luzhou, Sichuan, China
| | - Yu-Lin Xu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Sichuan Provincial Laboratory of Orthopaedic Engineering Luzhou, Sichuan, China
| | - Xi-Hai Zhang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Sichuan Provincial Laboratory of Orthopaedic Engineering Luzhou, Sichuan, China
| | - Lian Tang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Sichuan Provincial Laboratory of Orthopaedic Engineering Luzhou, Sichuan, China
| | - Yao Li
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Huang Y, Xue Q, Chang J, Wang X, Miao C. Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis. Cytokine 2023; 172:156381. [PMID: 37806072 DOI: 10.1016/j.cyto.2023.156381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Wnt5a is a member of the Wnt protein family, which acts on classical or multiple non-classical Wnt signaling pathways by binding to different receptors. The expression regulation and signal transduction of Wnt5a is closely related to the inflammatory response. Abnormal activation of Wnt5a signaling is an important part of inflammation and rheumatoid arthritis (RA). OBJECTIVES This paper mainly focuses on Wnt5a protein and its mediated signaling pathway, summarizes the latest research progress of Wnt5a in the pathological process of inflammation and RA, and looks forward to the main directions of Wnt5a in RA research, aiming to provide a theoretical basis for the prevention and treatment of RA diseases by targeting Wnt5a. RESULTS Wnt5a is highly expressed in activated blood vessels, histocytes and synoviocytes in inflammatory diseases such as sepsis, sepsis, atherosclerosis and rheumatoid arthritis. It mediates the production of pro-inflammatory cytokines and chemokines, regulates the migration and recruitment of various immune effector cells, and thus participates in the inflammatory response. Wnt5a plays a pathological role in synovial inflammation and bone destruction of RA, and may be an important clinical therapeutic target for RA. CONCLUSION Wnt5a is involved in the pathological process of inflammation and interacts with inflammatory factors. Wnt5a may be a new target for regulating the progression of RA disease and intervening therapy because of its multi-modal effects on the etiology of RA, especially as a regulator of osteoclast activity and inflammation.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
9
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
10
|
Geng C, Liu S, Wang J, Wang S, Zhang W, Rong H, Cao Y, Wang S, Li Z, Zhang Y. Targeting the cochlin/SFRP1/CaMKII axis in the ocular posterior pole prevents the progression of nonpathologic myopia. Commun Biol 2023; 6:884. [PMID: 37644183 PMCID: PMC10465513 DOI: 10.1038/s42003-023-05267-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Myopia is a major public health issue. However, interventional modalities for nonpathologic myopia are limited due to its complicated pathogenesis and the lack of precise targets. Here, we show that in guinea pig form-deprived myopia (FDM) and lens-induced myopia (LIM) models, the early initiation, phenotypic correlation, and stable maintenance of cochlin protein upregulation at the interface between retinal photoreceptors and retinal pigment epithelium (RPE) is identified by a proteomic analysis of ocular posterior pole tissues. Then, a microarray analysis reveals that cochlin upregulates the expression of the secreted frizzled-related protein 1 (SFRP1) gene in human RPE cells. Moreover, SFRP-1 elevates the intracellular Ca2+ concentration and activates Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling in a simian choroidal vascular endothelial cell line, and elicits vascular endothelial cell dysfunction. Furthermore, genetic knockdown of the cochlin gene and pharmacological blockade of SFRP1 abrogates the reduced choroidal blood perfusion and prevents myopia progression in the FDM model. Collectively, this study identifies a novel signaling axis that may involve cochlin in the retina, SFRP1 in the RPE, and CaMKII in choroidal vascular endothelial cells and contribute to the pathogenesis of nonpathologic myopia, implicating the potential of cochlin and SFRP1 as myopia interventional targets.
Collapse
Affiliation(s)
- Chao Geng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Siyi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Jindan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Sennan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Weiran Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Hua Rong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, 730000, Lanzhou, Gansu Province, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China.
| |
Collapse
|
11
|
Mao X, Wu W, Nan Y, Sun W, Wang Y. SMAD2 inhibits pyroptosis of fibroblast-like synoviocytes and secretion of inflammatory factors via the TGF-β pathway in rheumatoid arthritis. Arthritis Res Ther 2023; 25:144. [PMID: 37559090 PMCID: PMC10410963 DOI: 10.1186/s13075-023-03136-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease. Over-activation of fibroblast-like synoviocytes is responsible for the hyperplasia of synovium and destruction of cartilage and bone and pyroptosis of FLS plays a key role in those pathological processes during RA. This study investigated the detailed mechanisms that SMAD2 regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS We collected synovial tissues of RA patients and FLS-RA and cultured FLS for detection of expression of SMAD2. ASC, NLRP3, cleaved-caspase-1, and GSDMD-N were detected by Western blot after overexpression of SMAD2. Besides, flow cytometry, electron microscope, ELISA, HE staining, and Safranin O staining were performed to further demonstrate that SMAD2 can affect the pyroptosis of FLS-RA. RESULTS The expression of SMAD2 was down-regulated in synovial tissues of RA patients and FLS-RA. Overexpression of SMAD2 can inhibit the expression of ASC, NLRP3, cleaved-caspase-1, and GSDMD-N. Flow cytometry and electron microscope further demonstrated that SMAD2 attenuated pyroptosis of FLS-RA. In addition, overexpression of SMAD2 also inhibited inflammatory factors such as IL-1β, IL-18, IL-6, and IL-8 secretion and release of LDH. Besides, overexpression of SMAD2 can reverse the decrease of p-SMAD2 and TGF-TGF-β induced by nigericin. In vivo experiments on CIA rats further demonstrated that overexpression of SMAD2 by local intra-articular injection of LV-SMAD2 can effectively alleviate joint redness, swelling, and destruction of cartilage and bones. CONCLUSION SMAD2 inhibited FLS-RA pyroptosis by down-regulating of NLRP3 inflammasomes (NLRP3, ASC, and caspase-1 complex) and eased the secretion of inflammatory factors via the TGF-β signaling pathway, thereby improving the symptom of RA. We hope that this study may provide a new research idea for RA and a potential target for the treatment of RA.
Collapse
Affiliation(s)
- Xingxing Mao
- Suzhou Medical College of Soochow University, Suzhou, 215000, China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, Jiangsu, 226001, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, Jiangsu, 226001, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
12
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
13
|
Zou Q, Yuan R, Zhang Y, Wang Y, Zheng T, Shi R, Zhang M, Li Y, Fei K, Feng R, Pan B, Zhang X, Gong Z, Zhu L, Tang G, Li M, Li X, Jiang Y. A single-cell transcriptome atlas of pig skin characterizes anatomical positional heterogeneity. eLife 2023; 12:86504. [PMID: 37276016 DOI: 10.7554/elife.86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Different anatomical locations of the body skin show differences in their gene expression patterns depending on different origins, and the inherent heterogeneous information can be maintained in adults. However, highly resolvable cellular specialization is less well characterized in different anatomical regions of the skin. Pig is regarded as an excellent model animal for human skin research in view of its similar physiology to human. In this study, single-cell RNA sequencing was performed on pig skin tissues from six different anatomical regions of Chenghua (CH) pigs, with a superior skin thickness trait, and the back site of large white (LW) pigs. We obtained 233,715 cells, representing seven cell types, among which we primarily characterized the heterogeneity of the top three cell types, including smooth muscle cells (SMCs), endothelial cells (ECs), and fibroblasts (FBs). Then, we further identified several subtypes of SMCs, ECs, and FBs, and discovered the expression patterns of site-specific genes involved in some important pathways such as the immune response and extracellular matrix (ECM) synthesis in different anatomical regions. By comparing differentially expressed genes of skin FBs among different anatomical regions, we considered TNN, COL11A1, and INHBA as candidate genes for facilitating ECM accumulation. These findings of heterogeneity in the main skin cell types from different anatomical sites will contribute to a better understanding of inherent skin information and place the potential focus on skin generation, transmission, and transplantation, paving the foundation for human skin priming.
Collapse
Affiliation(s)
- Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, China
| | - Yu Zhang
- BGI Beijing Genome Institute, Beijing, China
| | - Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ran Feng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Binyun Pan
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xinyue Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
14
|
González-Chávez SA, Chaparro-Barrera E, Alvarado-Jáquez MF, Cuevas-Martínez R, Ochoa-Albíztegui RE, Pacheco-Tena C. Complete Freund's Adjuvant Induces a Fibroblast-like Synoviocytes (FLS) Metabolic and Migratory Phenotype in Resident Fibroblasts of the Inoculated Footpad at the Earliest Stage of Adjuvant-Induced Arthritis. Cells 2023; 12:cells12060842. [PMID: 36980183 PMCID: PMC10047124 DOI: 10.3390/cells12060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The fibroblast-like synoviocytes (FLS) have a crucial role in the pathogenesis of Rheumatoid Arthritis (RA); however, its precise mechanisms remain partially unknown. The involvement of the fibroblast in activating adjuvant-induced arthritis (AA) has not been previously reported. The objective was to describe the participation of footpads' fibroblasts in the critical initial process that drives the AA onset. Wistar rats were injected with Complete Freund's Adjuvant (CFA) or saline solution in the hind paws' footpads and euthanized at 24 or 48 h for genetic and histological analyses. Microarrays revealed the differentially expressed genes between the groups. The CFA dysregulated RA-linked biological processes at both times. Genes of MAPK, Jak-STAT, HIF, PI3K-Akt, TLR, TNF, and NF-κB signaling pathways were altered 24 h before the arrival of immune cells (CD4, CD8, and CD68). Key markers TNF-α, IL-1β, IL-6, NFκB, MEK-1, JAK3, Enolase, and VEGF were immunodetected in fibroblast in CFA-injected footpads at 24 h but not in the control group. Moreover, fibroblasts in the CFA inoculation site overexpressed cadherin-11, which is linked to the migration and invasion ability of RA-FLS. Our study shows that CFA induced a pathological phenotype in the fibroblast of the inoculation site at very early AA stages from 24 h, suggesting a prominent role in arthritis activation processes.
Collapse
Affiliation(s)
- Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | - Eduardo Chaparro-Barrera
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | - María Fernanda Alvarado-Jáquez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | - Rubén Cuevas-Martínez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| | | | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico
| |
Collapse
|
15
|
Jiang P, Wei K, Xu L, Chang C, Zhang R, Zhao J, Jin Y, Xu L, Shi Y, Qian Y, Sun S, Guo S, Wang R, Qin Y, He D. DNA methylation change of HIPK3 in Chinese rheumatoid arthritis and its effect on inflammation. Front Immunol 2023; 13:1087279. [PMID: 36703984 PMCID: PMC9872787 DOI: 10.3389/fimmu.2022.1087279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Homeodomain-interacting protein kinase 3 (HIPK3) plays an important role in cell proliferation, apoptosis, and inflammation. Over-expression of HIPK3 in immune cells in rheumatoid arthritis (RA) has been reported. In this study, we investigated blood methylation levels and clinical characteristics of RA in a Chinese population. METHODS A total of 235 patients with RA, 30 with osteoarthritis (OA), and 30 matched healthy controls were recruited. The methylation status of seven CpGs in the differentially methylated region of HIPK3 (cg05501357) was measured using targeted methylation-sequencing technology. The association between methylation haplotypes and the overall methylation status of HIPK3 with clinical characteristics was assessed using generalized linear regression. RESULTS All seven CpGs showed hypomethylation status in RA blood compared with OA and normal individuals (overall p= 1.143×10-8 and FDR= 2.799×10-7), which is consistent with the previously reported high expression of HIPK3 in RA immune cells. Among all seven CpGs, 33286785 showed the highest predictive power with an area under the curve (AUC) of 0.829; we received a higher AUC=0.864 when we combined HIPK3 with anti-citrullinated protein antibodies (ACPA -) and rheumatoid factor (RF +) in the prediction model, indicating that when a patient's ACPA is negative, HIPK3 can assist RF as a new clinical index for the diagnosis of RA. We also found that HIPK3 methylation levels were negatively correlated with C-reactive protein (CRP; r= -0.16, p= 0.01). Methylation haplotypes were analyzed, and the full methylation haplotype (FMH; r= 0.16, p= 0.01) and full non-methylation haplotype (FNH; r= 0.18, p= 0.0061) were negatively correlated with CRP. CONCLUSION Circulating blood methylation levels in the protein region of HIPK3 can be utilized as a supportive diagnostic biomarker and CRP level indicator for RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Cen Chang
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yehua Jin
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Linshuai Xu
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yi Qian
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Songtao Sun
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Rongsheng Wang
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yingying Qin
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
16
|
Jia Y, Li D, Yu J, Jiang W, Liao X, Zhao Q. Potential diabetic cardiomyopathy therapies targeting pyroptosis: A mini review. Front Cardiovasc Med 2022; 9:985020. [PMID: 36061533 PMCID: PMC9433721 DOI: 10.3389/fcvm.2022.985020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is primarily considered a pro-inflammatory class of caspase-1- and gasdermin D (GSDMD)-dependent programmed cell death. Inflammasome activation promotes the maturation and release of interleukin (IL)-1β and IL-18, cleavage of GSDMD, and development of pyroptosis. Recent studies have reported that NLRP3 inflammasome activation-mediated pyroptosis aggravates the formation and development of diabetes cardiomyopathy (DCM). These studies provide theoretical mechanisms for exploring a novel approach to treat DCM-associated cardiac dysfunction. Accordingly, this review aims to summarize studies that investigated possible DCM therapies targeting pyroptosis and elucidate the molecular mechanisms underlying NLRP3 inflammasome-mediated pyroptosis, and its potential association with the pathogenesis of DCM. This review may serve as a basis for the development of potential pharmacological agents as novel and effective treatments for managing and treating DCM.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Zhao,
| |
Collapse
|