1
|
Li N, Zeng PYF, Kim HAJ, Karimi A, Ying S, Shaikh MH, Khan H, Joris K, Al Jawhri M, Cecchini M, Mymryk JS, Barrett JW, Nichols AC. Molecular features of T and N stage progression in laryngeal cancer. Oral Oncol 2025; 165:107283. [PMID: 40239580 DOI: 10.1016/j.oraloncology.2025.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/12/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Laryngeal squamous cell cancer (LSCC) is a common type of head and neck cancer that is typically unrelated to human papilloma virus (HPV) infection. Late-stage laryngeal cancers are associated with greater morbidity due to obstructive symptoms, and poorer overall survival. Using data from The Cancer Genome Atlas (TCGA), we analyzed 112 patient LSCC samples, comparing patient proteome, transcriptome and genome between early and late T and N samples. We observed significant differences in SNV frequency for various genes between the early and late-stage groups. Most notably we observed that NOTCH1 mutation, which was more frequent in late N-stage supraglottic cancers, was also associated with poorer patient survival in LSCCs. Methylation analysis also revealed changes in JUN gene methylation in late N glottic cancers. Transcriptomic analysis revealed differential expression in c-JUN, HOXB7 and HOXB9 transcript levels, suggesting potential involvement of these pathways in progression and nodal involvement. Our findings illustrate that LSCC undergoes distinct molecular changes associated with different stages and subsites. We observed multiple potential markers for progression, metastases and survival, including NOTCH1 mutation, which may aid as prognostic indicators in future studies.
Collapse
Affiliation(s)
- Nicholas Li
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Hugh A J Kim
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Amir Karimi
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Shengjie Ying
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Mushfiq H Shaikh
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Halema Khan
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Krista Joris
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - MohdWessam Al Jawhri
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada
| | - Matthew Cecchini
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada; Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Maniaci A, Giurdanella G, Chiesa Estomba C, Mauramati S, Bertolin A, Lionello M, Mayo-Yanez M, Rizzo PB, Lechien JR, Lentini M. Personalized Treatment Strategies via Integration of Gene Expression Biomarkers in Molecular Profiling of Laryngeal Cancer. J Pers Med 2024; 14:1048. [PMID: 39452555 PMCID: PMC11508418 DOI: 10.3390/jpm14101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Laryngeal cancer poses a substantial challenge in head and neck oncology, and there is a growing focus on customized medicine techniques. The present state of gene expression indicators in laryngeal cancer and their potential to inform tailored therapy choices are thoroughly examined in this review. We examine significant molecular changes, such as TP53, CDKN2A, PIK3CA, and NOTCH1 mutations, which have been identified as important participants in the development of laryngeal cancer. The study investigates the predictive and prognostic significance of these genetic markers in addition to the function of epigenetic changes such as the methylation of the MGMT promoter. We also go over the importance of cancer stem cell-related gene expression patterns, specifically CD44 and ALDH1A1 expression, in therapy resistance and disease progression. The review focuses on indicators, including PD-L1, CTLA-4, and tumor mutational burden (TMB) in predicting immunotherapy responses, highlighting recent developments in our understanding of the intricate interactions between tumor genetics and the immune milieu. We also investigate the potential for improving prognosis accuracy and treatment selection by the integration of multi-gene expression panels with clinicopathological variables. The necessity for uniform testing and interpretation techniques is one of the difficulties, in implementing these molecular insights into clinical practice, that are discussed. This review seeks to provide a comprehensive framework for promoting personalized cancer therapy by combining the most recent data on gene expression profiling in laryngeal cancer. Molecularly guided treatment options may enhance patient outcomes.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (G.G.); (M.L.)
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy
- Head and Neck Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (C.C.E.); (M.M.-Y.); (J.R.L.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (G.G.); (M.L.)
| | - Carlos Chiesa Estomba
- Head and Neck Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (C.C.E.); (M.M.-Y.); (J.R.L.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Donostia, 20003 San Sebastian, Spain
| | - Simone Mauramati
- Department of Otolaryngology Head Neck Surgery, University of Pavia, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Andy Bertolin
- Department Otorhinolaryngology, Vittorio Veneto Hospital (ML, AB), Anesthesia and Intensive Care, Vittorio Veneto Hospital, 31029 Vittorio Veneto, Italy; (A.B.); (M.L.)
| | - Marco Lionello
- Department Otorhinolaryngology, Vittorio Veneto Hospital (ML, AB), Anesthesia and Intensive Care, Vittorio Veneto Hospital, 31029 Vittorio Veneto, Italy; (A.B.); (M.L.)
| | - Miguel Mayo-Yanez
- Head and Neck Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (C.C.E.); (M.M.-Y.); (J.R.L.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital San Rafael (HSR), 15006 A Coruña, Spain
| | - Paolo Boscolo Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34127 Trieste, Italy;
| | - Jerome R. Lechien
- Head and Neck Study Group, Young Otolaryngologists-International Federation of Otorhinolaryngological Societies, 13005 Paris, France; (C.C.E.); (M.M.-Y.); (J.R.L.)
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, School of Medicine, 64000 Brussels, Belgium
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (G.G.); (M.L.)
| |
Collapse
|
3
|
Chen HB, Gong XY, Shen WH, Zhu ZH, Chen X. Exosomal AC068768.1 enhances the proliferation, migration, and invasion of laryngeal squamous cell carcinoma through miR-139-5p/NOTCH1 axis. Heliyon 2024; 10:e36358. [PMID: 39258189 PMCID: PMC11386030 DOI: 10.1016/j.heliyon.2024.e36358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of laryngeal squamous cell carcinoma (LSCC). This study aimed to investigate the roles of AC068768.1 in LSCC. Methods Exosomes were extracted by ultracentrifugation and identified by transmission electron microscopy (TEM) assay. The expression levels of mRNA and miRNA were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cellular functions were assesses through immunofluorescence, flow cytometry, colony formation, wound healing and transwell assays. Chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to verify the binding of AC068768.1 by signal transducer and activator of transcription 3 (STAT3). Xenograft assays were performed to confirm the roles of AC068768.1 in LSCC, and hematoxylin-eosin (HE) staining was applied for histological analysis. Results LSCC cell-derived exosomes induced M2-like tumor-associated macrophages (TAM2) polarization, which promoted the proliferation, migration, and invasion of LSCCs. Knockdown of exosomal AC068768.1 inhibited M2 polarization and suppressed LSCC aggressiveness both in vitro and in vivo. Moreover, AC068768.1 sponged miR-139-5p, inducing the upregulation of neurogenic locus notch homolog protein 1 (NOTCH1). LSCCs adapted to TAM2 polarization in the tumor microenvironment via AC068768.1-mediated activation of the NOTCH1 pathway. Additionally, NOTCH1 activated STAT3. Conclusion The AC068768.1/miR-139-5p/NOTCH1/STAT3 axis promotes the metastasis of LSCC. This finding may provide a novel target for LSCC therapy.
Collapse
Affiliation(s)
- Hai-Bin Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xiao-Yang Gong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Wen-Hao Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zi-Hang Zhu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
4
|
Liu L, Wu J. Identifying key pathogenic mechanisms and potential intervention targets for recurrence after laryngeal cancer treatment through bioinformatics screening. Transl Cancer Res 2024; 13:3826-3841. [PMID: 39145096 PMCID: PMC11319988 DOI: 10.21037/tcr-24-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Background Laryngeal cancer (LC), a prevalent malignant tumor of the head and neck, is characterized by a high rate of postoperative recurrence and significant treatment challenges upon recurrence, severely impacting patients' quality of life. There is a pressing need for effective biomarkers in clinical practice to predict the risk of LC recurrence and guide the development of personalized treatment plans. This study uses bioinformatics methods to explore potential biomarkers for LC recurrence, focusing on key genes and exploring their functions and mechanisms of action in LC recurrence. The aim is to provide new perspectives and evidence for clinical diagnosis, prognostic evaluation, and targeted treatment of LC. Methods Gene expression profiles from the GSE25727 data set in the Gene Expression Omnibus database were analyzed to detect the differentially expressed genes (DEGs) between the tumor tissues of postoperative recurrent and non-recurrent early stage LC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also conducted. A protein-protein interaction (PPI) network and transcription factor (TF)-DEG-microRNA (miRNA) network were developed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, with key genes selected using the Molecular Complex Detection (MCODE) plugin. A Gene Set Enrichment Analysis (GSEA) was carried out to investigate the possible mechanisms of the key genes. A retrospective analysis was conducted using the clinical data of 83 LC patients. Immunohistochemical staining was used to examine the transcription level of the key genes in the LC tumor tissues and the factors affecting postoperative recurrence. Results A total of 248 upregulated and 34 downregulated DEGs were identified in the GSE25727 data set. The PPI network analysis identified a significant module and five candidate genes (i.e., RRAGA, SLC38A9, WDR24, ATP6V1B1, and LAMTOR3). The construction of the TF-DEG-miRNA network indicated that ATP6V1B1 might be regulated by one TF and interact with 17 miRNAs. The KEGG and GSEA analyses suggested that ATP6V1B1 may influence LC recurrence through the involvement of pro-inflammatory and pro-fibrotic mediators, glutathione metabolism, matrix metalloproteinases, immune regulation, and lymphocyte interactions. The recurrence rate of the 83 LC patients included in the study was 19.3% (16/83). The immunohistochemistry results indicated that ATP6V1B1 was highly expressed in patients with recurrent LC. The univariate and multivariate logistic regression analyses revealed that tumor stage T3 (P=0.04), tumor stage T4 (P=0.01), and a high expression of ATP6V1B1 (P=0.02) were risk factors for recurrence after surgical treatment in LC patients. Conclusions The key genes and signaling pathways identified through the bioinformatics screening provide insights into the potential mechanisms of the pathogenesis of LC. ATP6V1B1 may promote the recurrence of LC by weakening the immune phenotype. Our findings provide a theoretical basis for further research into clinical diagnostics and treatment strategies for LC.
Collapse
Affiliation(s)
- Laiyan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiebin Wu
- Department of Hepatobiliary Surgery, The Second People’s Hospital of Wuhu, Wuhu, China
| |
Collapse
|
5
|
Wang M, Yu F, Zhang Y, Li P. Novel insights into Notch signaling in tumor immunity: potential targets for cancer immunotherapy. Front Immunol 2024; 15:1352484. [PMID: 38444855 PMCID: PMC10912471 DOI: 10.3389/fimmu.2024.1352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Notch signaling pathway is a highly conserved system of cell-to-cell communication that participates in various biological processes, such as stem cell maintenance, cell fate decision, cell proliferation and death during homeostasis and development. Dysregulation of Notch signaling has been associated with many aspects of cancer biology, such as maintenance of cancer stem-like cells (CSCs), cancer cell metabolism, angiogenesis and tumor immunity. Particularly, Notch signaling can regulate antitumor or pro-tumor immune cells within the tumor microenvironment (TME). Currently, Notch signaling has drawn significant attention in the therapeutic development of cancer treatment. In this review, we focus on the role of Notch signaling pathway in remodeling tumor immune microenvironment. We describe the impact of Notch signaling on the efficacy of cancer immunotherapies. Furthermore, we summarize the results of relevant preclinical and clinical trials of Notch-targeted therapeutics and discuss the challenges in their clinical application in cancer therapy. An improved understanding of the involvement of Notch signaling in tumor immunity will open the door to new options in cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Law AB, Schmitt NC. Laryngeal Anatomy, Molecular Biology, Cause, and Risk Factors for Laryngeal Cancer. Otolaryngol Clin North Am 2023; 56:197-203. [PMID: 37030934 DOI: 10.1016/j.otc.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Laryngeal cancer is declining in incidence in many parts of the world, as smoking becomes a less common habit. However, challenging cases of laryngeal cancer still exist and require expertise from otolaryngologists. This article reviews the relevant anatomy and lymphatic drainage pathways of the larynx because they pertain to cancer spread. The molecular and immune landscapes of laryngeal cancer, which are tightly linked to smoking, are also discussed.
Collapse
Affiliation(s)
- Anthony B Law
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, 550 Peachtree Street Northeast, 11th Floor Otolaryngology, Atlanta, GA 30308, USA; Winship Cancer Institute, Emory University School of Medicine, 550 Peachtree Street Northeast, 11th Floor Otolaryngology, Atlanta, GA 30308, USA
| | - Nicole C Schmitt
- Department of Otolaryngology - Head and Neck Surgery, Emory University School of Medicine, 550 Peachtree Street Northeast, 11th Floor Otolaryngology, Atlanta, GA 30308, USA; Winship Cancer Institute, Emory University School of Medicine, 550 Peachtree Street Northeast, 11th Floor Otolaryngology, Atlanta, GA 30308, USA.
| |
Collapse
|