1
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
2
|
Han H, Zhao Z, He M, Guan G, Cao J, Li T, Han B, Zhang B. Global research trends in the tumor microenvironment of hepatocellular carcinoma: insights based on bibliometric analysis. Front Immunol 2024; 15:1474869. [PMID: 39411719 PMCID: PMC11473330 DOI: 10.3389/fimmu.2024.1474869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Objective This study aimed to use visual mapping and bibliometric analysis to summarize valuable information on the tumor microenvironment (TME)-related research on hepatocellular carcinoma (HCC) in the past 20 years and to identify the research hotspots and trends in this field. Methods We screened all of the relevant literature on the TME of HCC in the Web of Science database from 2003 to 2023 and analysed the research hotspots and trends in this field via VOSviewer and CiteSpace. Results A total of 2,157 English studies were collected. According to the prediction, the number of papers that were published in the past three years will be approximately 1,394, accounting for 64.63%. China published the most papers (n=1,525) and had the highest total number of citations (n=32,253). Frontiers In Immunology published the most articles on the TME of HCC (n=75), whereas, Hepatology was the journal with the highest total number of citations (n=4,104) and average number of citations (n=91). The four clusters containing keywords such as "cancer-associated fibroblasts", "hepatic stellate cells", "immune cells", "immunotherapy", "combination therapy", "landscape", "immune infiltration", and "heterogeneity" are currently hot research topics in this field. The keywords "cell death", "ferroptosis", "biomarkers", and "prognostic features" have emerged relatively recently, and these research directions are becoming increasingly popular. Conclusions We identified four key areas of focus in the study of the TME in HCC: the main components and roles in the TME, immunotherapy, combination therapy, and the microenvironmental landscape. Moreover, the result of our study indicate that effect of ferroptosis on the TME in HCC may become a future research trend.
Collapse
Affiliation(s)
- Hongmin Han
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang He
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ge Guan
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junning Cao
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianxiang Li
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Liu B, Liu L, Liu Y. Targeting cell death mechanisms: the potential of autophagy and ferroptosis in hepatocellular carcinoma therapy. Front Immunol 2024; 15:1450487. [PMID: 39315094 PMCID: PMC11416969 DOI: 10.3389/fimmu.2024.1450487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a type of cell death that plays a remarkable role in the growth and advancement of malignancies including hepatocellular carcinoma (HCC). Non-coding RNAs (ncRNAs) have a considerable impact on HCC by functioning as either oncogenes or suppressors. Recent research has demonstrated that non-coding RNAs (ncRNAs) have the ability to control ferroptosis in HCC cells, hence impacting the advancement of tumors and the resistance of these cells to drugs. Autophagy is a mechanism that is conserved throughout evolution and plays a role in maintaining balance in the body under normal settings. Nevertheless, the occurrence of dysregulation of autophagy is evident in the progression of various human disorders, specifically cancer. Autophagy plays dual roles in cancer, potentially influencing both cell survival and cell death. HCC is a prevalent kind of liver cancer, and genetic mutations and changes in molecular pathways might worsen its advancement. The role of autophagy in HCC is a subject of debate, as it has the capacity to both repress and promote tumor growth. Autophagy activation can impact apoptosis, control proliferation and glucose metabolism, and facilitate tumor spread through EMT. Inhibiting autophagy can hinder the growth and spread of HCC and enhance the ability of tumor cells to respond to treatment. Autophagy in HCC is regulated by several signaling pathways, such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs. Utilizing anticancer drugs to target autophagy may have advantageous implications for the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Frame G, Leong H, Haas R, Huang X, Wright J, Emmenegger U, Downes M, Boutros PC, Kislinger T, Liu SK. Targeting PLOD2 suppresses invasion and metastatic potential in radiorecurrent prostate cancer. BJC REPORTS 2024; 2:60. [PMID: 39184453 PMCID: PMC11338830 DOI: 10.1038/s44276-024-00085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024]
Abstract
Background Metastatic relapse of prostate cancer after radiotherapy is a significant cause of prostate cancer-related morbidity and mortality. PLOD2 is a mediator of invasion and metastasis that we identified as being upregulated in our highly aggressive radiorecurrent prostate cancer cell line. Methods Patient dataset analysis was conducted using a variety of prostate cancer cohorts. Prostate cancer cell lines were treated with siRNA, or the drug PX-478 prior to in vitro invasion, migration, or in vivo chick embryo (CAM) extravasation assay. Protein levels were detected by western blot. For RNA analysis, RNA sequencing was conducted on PLOD2 knockdown cells and validated by qRT-PCR. Results PLOD2 is a negative prognostic factor associated with biochemical relapse, driving invasion, migration, and extravasation in radiorecurrent prostate cancer. Mechanistically, HIF1α upregulation drives PLOD2 expression in our radiorecurrent prostate cancer cells, which is effectively inhibited by HIF1α inhibitor PX-478 to reduce invasion, migration, and extravasation. Finally, the long non-coding RNA LNCSRLR acts as a promoter of invasion downstream of PLOD2. Conclusions Together, our results demonstrate for the first time the role of PLOD2 in radiorecurrent prostate cancer invasiveness, and point towards its potential as a therapeutic target to reduce metastasis and improve survival outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Hon Leong
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Roni Haas
- University of California Los Angeles, Los Angeles, CA USA
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Jessica Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Urban Emmenegger
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Michelle Downes
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | | | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
5
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
6
|
Zong K, Lin C, Luo K, Deng Y, Wang H, Hu J, Chen S, Li R. Ferroptosis-related lncRNA NRAV affects the prognosis of hepatocellular carcinoma via the miR-375-3P/SLC7A11 axis. BMC Cancer 2024; 24:496. [PMID: 38637761 PMCID: PMC11027313 DOI: 10.1186/s12885-024-12265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Ferroptosis has important value in cancer treatment. It is significant to explore the new ferroptosis-related lncRNAs prediction model in Hepatocellular carcinoma (HCC) and the potential molecular mechanism of ferroptosis-related lncRNAs. We constructed a prognostic multi-lncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HCC. qRT-PCR was applied to determine the expression of lncRNA in HCC cells. The biological roles of NRAV in vitro and in vivo were determined by performing a series of functional experiments. Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of NRAV with miR-375-3P. We identified 6 differently expressed lncRNAs associated with the prognosis of HCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HCC. Moreover, the AUC of the lncRNAs signature showed utility in predicting HCC prognosis. Further functional experiments show that the high expression of NRAV can strengthen the viciousness of HCC. Interestingly, we found that NRAV can enhance iron export and ferroptosis resistance. Further study showed that NRAV competitively binds to miR-375-3P and attenuates the inhibitory effect of miR-375-3P on SLC7A11, affecting the prognosis of patients with HCC. In conclusion, We developed a novel ferroptosis-related lncRNAs prognostic model with important predictive value for the prognosis of HCC. NRAV is important in ferroptosis induction through the miR-375-3P/SLC7A11 axis.
Collapse
Affiliation(s)
- Ke Zong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Caifeng Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
| | - Kai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yilei Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongfei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianfei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, No. 134, East Street, Fuzhou, Fujian Province, 350001, PR China.
| | - Renfeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
7
|
Liu Y, Meng J, Ruan X, Wei F, Zhang F, Qin X. A disulfidptosis-related lncRNAs signature in hepatocellular carcinoma: prognostic prediction, tumor immune microenvironment and drug susceptibility. Sci Rep 2024; 14:746. [PMID: 38185671 PMCID: PMC10772085 DOI: 10.1038/s41598-024-51459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024] Open
Abstract
Disulfidptosis, a novel type of programmed cell death, has attracted researchers' attention worldwide. However, the role of disulfidptosis-related lncRNAs (DRLs) in liver hepatocellular carcinoma (LIHC) not yet been studied. We aimed to establish and validate a prognostic signature of DRLs and analyze tumor microenvironment (TME) and drug susceptibility in LIHC patients. RNA sequencing data, mutation data, and clinical data were obtained from the Cancer Genome Atlas Database (TCGA). Lasso algorithm and cox regression analysis were performed to identify a prognostic DRLs signature. Kaplan-Meier curves, principal component analysis (PCA), nomogram and calibration curve, function enrichment, TME, immune dysfunction and exclusion (TIDE), tumor mutation burden (TMB), and drug sensitivity analyses were analyzed. External datasets were used to validate the predictive value of DRLs. qRT-PCR was also used to validate the differential expression of the target lncRNAs in tissue samples and cell lines. We established a prognostic signature for the DRLs (MKLN1-AS and TMCC1-AS1) in LIHC. The signature could divide the LIHC patients into low- and high-risk groups, with the high-risk subgroup associated with a worse prognosis. We observed discrepancies in tumor-infiltrating immune cells, immune function, function enrichment, and TIDE between two risk groups. LIHC patients in the high-risk group were more sensitive to several chemotherapeutic drugs. External datasets, clinical tissue, and cell lines confirmed the expression of MKLN1-AS and TMCC1-AS1 were upregulated in LIHC and associated with a worse prognosis. The novel signature based on the two DRLs provide new insight into LIHC prognostic prediction, TME, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanqiong Liu
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiyu Meng
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuelian Ruan
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangyi Wei
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuyong Zhang
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Chen W, Ruan M, Zou M, Liu F, Liu H. Clinical Significance of Non-Coding RNA Regulation of Programmed Cell Death in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4187. [PMID: 37627215 PMCID: PMC10452865 DOI: 10.3390/cancers15164187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a widely prevalent and malignantly progressive tumor. Most patients are typically diagnosed with HCC at an advanced stage, posing significant challenges in the execution of curative surgical interventions. Non-coding RNAs (ncRNAs) represent a distinct category of RNA molecules not directly involved in protein synthesis. However, they possess the remarkable ability to regulate gene expression, thereby exerting significant regulatory control over cellular processes. Notably, ncRNAs have been implicated in the modulation of programmed cell death (PCD), a crucial mechanism that various therapeutic agents target in the fight against HCC. This review summarizes the clinical significance of ncRNA regulation of PCD in HCC, including patient diagnosis, prognosis, drug resistance, and side effects. The aim of this study is to provide new insights and directions for the diagnosis and drug treatment strategies of HCC.
Collapse
Affiliation(s)
| | | | | | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China; (W.C.); (M.R.)
| |
Collapse
|
9
|
Li C, Cui X, Li Y, Guo D, He S. Identification of ferroptosis and drug resistance related hub genes to predict the prognosis in Hepatocellular Carcinoma. Sci Rep 2023; 13:8681. [PMID: 37248280 DOI: 10.1038/s41598-023-35796-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Currently, overcoming the drug resistance in HCC is a critical challenge and ferroptosis has emerged as a promising therapeutic option for cancer. We aim to construct a new gene signature related to ferroptosis and drug resistance to predict the prognosis in HCC. The RNA-seq data of HCC patients was obtained from the Cancer Genome Atlas database. Using least absolute shrinkage and selection operator cox regression, Kaplan-Meier analysis, and differential analysis, we constructed a prognostic model consisting of six hub genes (TOP2A, BIRC5, VEGFA, HIF1A, FTH1, ACSL3) related to ferroptosis and drug resistance in HCC. Functional enrichment, pathway enrichment and GSEA analysis were performed to investigate the potential molecular mechanism, and construction of PPI, mRNA-miRNA, mRNA-RBP, mRNA-TF and mRNA-drugs interaction networks to predict its interaction with different molecules. Clinical prognostic characteristics were revealed by univariate, multivariate cox regression analysis and nomogram. We also analyzed the relationship between the signature, immune checkpoints, and drug sensitivity. The expression of the gene signature was detected in HCC cell lines and HPA database. Our prognostic model classified patients into high and low-risk groups based on the risk scores and found the expression level of the genes was higher in the high-risk group than the low-risk group, demonstrating that high expression of the hub genes was associated with poor prognosis in HCC. ROC analysis revealed its high diagnostic efficacy in both HCC and normal tissues. The proportional hazards model and calibration analysis confirmed that the model's prediction was most accurate for 1- and 3-years survival. QRT-PCR showed the high expression level of the gene signature in HCC. Our study built a novel gene signature with good potential to predict the prognosis of HCC, which may provide new therapeutic targets and molecular mechanism for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiaomeng Cui
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Hu C, Zeng X, Zhu Y, Huang Z, Liu J, Ji D, Zheng Z, Wang Q, Tan W. Regulation of ncRNAs involved with ferroptosis in various cancers. Front Genet 2023; 14:1136240. [PMID: 37065473 PMCID: PMC10090411 DOI: 10.3389/fgene.2023.1136240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
As a special pattern of programmed cell death, ferroptosis is reported to participate in several processes of tumor progression, including regulating proliferation, suppressing apoptotic pathways, increasing metastasis, and acquiring drug resistance. The marked features of ferroptosis are an abnormal intracellular iron metabolism and lipid peroxidation that are pluralistically modulated by ferroptosis-related molecules and signals, such as iron metabolism, lipid peroxidation, system Xc−, GPX4, ROS production, and Nrf2 signals. Non-coding RNAs (ncRNAs) are a type of functional RNA molecules that are not translated into a protein. Increasing studies demonstrate that ncRNAs have a diversity of regulatory roles in ferroptosis, thus influencing the progression of cancers. In this study, we review the fundamental mechanisms and regulation network of ncRNAs on ferroptosis in various tumors, aiming to provide a systematic understanding of recently emerging non-coding RNAs and ferroptosis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| |
Collapse
|
11
|
Yang L, Guan Y, Liu Z. Role of ferroptosis and its non-coding RNA regulation in hepatocellular carcinoma. Front Pharmacol 2023; 14:1177405. [PMID: 37124203 PMCID: PMC10133567 DOI: 10.3389/fphar.2023.1177405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that involves the accumulation of iron-dependent lipid peroxides and plays a vital role in the tumorigenesis, development, and drug resistance of various tumors such as hepatocellular carcinoma (HCC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) participate in the initiation and progression of HCC, either act as oncogenes or tumor suppressors. Recent studies have shown that ncRNAs can regulate ferroptosis in HCC cells, which would affect the tumor progression and drug resistance. Therefore, clarifying the underlying role of ferroptosis and the regulatory role of ncRNA on ferroptosis in HCC could develop new treatment interventions for this disease. This review briefly summarizes the role of ferroptosis and ferroptosis-related ncRNAs in HCC tumorigenesis, progression, treatment, drug resistance and prognosis, for the development of potential therapeutic strategies and prognostic markers in HCC patients.
Collapse
Affiliation(s)
| | - Yu Guan
- *Correspondence: Yu Guan, ; Zhanbing Liu,
| | | |
Collapse
|