1
|
Kang X, Li X, Zhou J, Zhang Y, Qiu L, Tian C, Deng Z, Liang X, Zhang Z, Du S, Hu S, Wang N, Yue Z, Xu Y, Gao Y, Dai J, Wang Z, Yu C, Chen J, Wu Y, Chen L, Yao Y, Yao S, Yang X, Yan L, Wen Q, Depies OM, Chan K, Liang X, Li G, Zi Z, Liu X, Gan H. Extrachromosomal DNA replication and maintenance couple with DNA damage pathway in tumors. Cell 2025:S0092-8674(25)00414-3. [PMID: 40300601 DOI: 10.1016/j.cell.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 05/01/2025]
Abstract
Extrachromosomal DNA (ecDNA) drives the evolution of cancer cells. However, the functional significance of ecDNA and the molecular components involved in its replication and maintenance remain largely unknown. Here, using CRISPR-C technology, we generated ecDNA-carrying (ecDNA+) cell models. By leveraging these models alongside other well-established systems, we demonstrated that ecDNA can replicate and be maintained in ecDNA+ cells. The replication of ecDNA activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) pathway. Topoisomerases, such as TOP1 and TOP2B, play a role in ecDNA replication-induced DNA double-strand breaks (DSBs). A subset of these elevated DSBs persists into the mitotic phase and is primarily repaired by the alternative non-homologous end joining (alt-NHEJ) pathway, which involves POLθ and LIG3. Correspondingly, ecDNA maintenance requires DDR, and inhibiting DDR impairs the circularization of ecDNA. In summary, we demonstrate reciprocal interactions between ecDNA maintenance and DDR, providing new insights into the detection and treatment of ecDNA+ tumors.
Collapse
Affiliation(s)
- Xing Kang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xinran Li
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhou
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Zhang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lingyu Qiu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Congcong Tian
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiwen Deng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyan Liang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziwei Zhang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Suili Hu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Nan Wang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Yue
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yajing Xu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuan Gao
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chuanhe Yu
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jinyi Chen
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuchun Wu
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liangming Chen
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuan Yao
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sitong Yao
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinran Yang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lixia Yan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wen
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Olivia M Depies
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaohuan Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gang Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhike Zi
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangyu Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Haiyun Gan
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Shen Y, Yang P, Lu Y. Expression and prognosis of NR3C1 in uterine corpus endometrial carcinoma based on multiple datasets. Discov Oncol 2025; 16:370. [PMID: 40113641 PMCID: PMC11926321 DOI: 10.1007/s12672-025-02086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC), a prevalent malignancy in the female reproductive system, has witnessed a 30% increase in recent year. Recognizing the significance of early treatment in reducing patient mortality, the identification of potential biomarkers for UCEC plays a crucial role in early diagnosis. This study was to identify key genes associated with UCEC utilizing the Gene Expression Omnibus database, followed by validating their prognostic value across multiple databases. Analysis of four UCEC databases (GSE17025, GSE36389, GSE63678, GSE115810) yielded 72 co-expressed genes. KEGG and GO enrichment analyses revealed their involvement in physiological processes such as transcriptional misregulation in cancer. Constructing a protein-protein interaction network for these 72 genes, the top 10 genes with significant interactions were identified. Survival regression analysis highlighted NR3C1 as the gene with a substantial impact on UCEC prognostic outcomes. Differential expression analysis indicated lower expression of NR3C1 in UCEC compared to normal endometrial tissue. Cox regression analysis, performed on clinical datasets of UCEC patients, identified clinical stage III, clinical stage IV, age, and NR3C1 as independent prognostic factors influencing UCEC outcomes. The LinkedOmics online database revealed the top 50 positively and negatively correlated genes with NR3C1 in UCEC. Subsequent investigations into the relationship between NR3C1 and tumor-infiltrating immune cells were conducted using R software. Gene set enrichment analysis provided insights into NR3C1-related genes, showing enrichment in processes such as Ribosome, Oxidative phosphorylation in UCEC. Collectively, these comprehensive analyses suggest that NR3C1 may serve as a potential biomarker indicating the prognosis of UCEC.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Obstetrics and Gynecology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, 100191, Beijing, China.
| | - Peihan Yang
- Westa College, Southwest University, Chongqing, 400712, China
| | - Yanping Lu
- Department of Obstetrics and Gynecology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, 100191, Beijing, China.
| |
Collapse
|
4
|
Zhao Z, Wang R, Wang R, Song J, Ma F, Pan H, Gao C, Wang D, Chen X, Fan X. Pancancer analysis of the prognostic and immunological role of FANCD2: a potential target for carcinogenesis and survival. BMC Med Genomics 2024; 17:69. [PMID: 38443946 PMCID: PMC10916239 DOI: 10.1186/s12920-024-01836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Recent evidence has shed light on the significant role of FANCD2 in cancer initiation, development, and progression. However, a comprehensive pan-cancer analysis of FANCD2 has been lacking. In this study, we have conducted a thorough investigation into the expression profiles and prognostic significance of FANCD2, as well as its correlation with clinicopathological parameters and immune cell infiltration, using advanced bioinformatic techniques. The results demonstrate that FANCD2 is significantly upregulated in various common cancers and is associated with prognosis. Notably, higher expression levels of FANCD2 are linked to poor overall survival, as indicated by Cox regression and Kaplan-Meier analyses. Additionally, we have observed a decrease in the methylation of FANCD2 DNA in some cancers, and this decrease is inversely correlated with FANCD2 expression. Genetic alterations in FANCD2 predominantly manifest as mutations, which are associated with overall survival, disease-specific survival, disease-free survival, and progression-free survival in certain tumor types. Moreover, FANCD2 exhibits a strong correlation with infiltrating cell levels, immune checkpoint genes, tumor mutation burden (TMB), and microsatellite instability (MSI). Enrichment analysis further highlights the potential impact of FANCD2 on Fanconi anemia (FA) pathway and cell cycle regulation. Through this comprehensive pan-cancer analysis, we have gained a deeper understanding of the functions of FANCD2 in oncogenesis and metastasis across different types of cancer.
Collapse
Affiliation(s)
- Zedan Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Ruyu Wang
- School of clinical medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ruixue Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jialing Song
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Deqiang Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| | - Xuemei Chen
- Department of Obstetrics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| | - Xiangzhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
5
|
Jing X, Qin X, Liu H, Liu H, Wang H, Qin J, Zhang Y, Cao S, Fan X. DNA damage response alterations in clear cell renal cell carcinoma: clinical, molecular, and prognostic implications. Eur J Med Res 2024; 29:107. [PMID: 38326910 PMCID: PMC10848511 DOI: 10.1186/s40001-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic responses. Nonetheless, the characteristics and significance of DDR alterations in clear cell renal cell carcinoma (ccRCC) remain undefined. This study aimed to explore the predictive role, molecular mechanism, and tumor immune profile of DDR genes in ccRCC. METHODS We prospectively sequenced 757 tumors and matched blood DNA samples from Chinese patients with ccRCC using next-generation sequencing (NGS) and analyzed data from 537 patients from The Cancer Genome Atlas (TCGA). A comprehensive analysis was performed. RESULTS Fifty-two percent of Chinese patients with ccRCC harbored DDR gene mutations and 57% of TCGA patients. The immunotherapy treatment prognosis of patients with DDR gene mutations was superior to that of patients without DDR gene mutations (p = 0.047). DDR gene mutations were associated with more gene mutations and a higher tumor mutation load (TMB, p < 0.001). Moreover, patients with DDR gene mutations have a distinct mutational signature compared with those with wild-type DDR. Furthermore, the DDR-mut group had elevated neoantigen load (including single-nucleotide variants (SNV) and indel neoantigen load, p = 0.037 and p = 0.002, respectively), TCR Shannon (p = 0.025), and neutrophils (p = 0.010). DDR gene mutations exhibited a distinct immune profile with significantly higher expression levels of TNFSF9, CD70, ICAM1, and indoleamine-2,3-dioxygenase (IDO) and lower expression levels of VTCN1 and IL12A. CONCLUSIONS Our data suggest that the detection of somatic mutations in DDR genes can predict the efficacy of immunotherapy in patients with ccRCC. Furthermore, we revealed the unique molecular and immune mechanisms underlying ccRCC with DDR gene mutations.
Collapse
Affiliation(s)
- Xiao Jing
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangcheng Qin
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Liu
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Yanui Zhang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Xiaodong Fan
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, China.
| |
Collapse
|
6
|
Huang X, Ren Q, Yang L, Cui D, Ma C, Zheng Y, Wu J. Immunogenic chemotherapy: great potential for improving response rates. Front Oncol 2023; 13:1308681. [PMID: 38125944 PMCID: PMC10732354 DOI: 10.3389/fonc.2023.1308681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
The activation of anti-tumor immunity is critical in treating cancers. Recent studies indicate that several chemotherapy agents can stimulate anti-tumor immunity by inducing immunogenic cell death and durably eradicate tumors. This suggests that immunogenic chemotherapy holds great potential for improving response rates. However, chemotherapy in practice has only had limited success in inducing long-term survival or cure of cancers when used either alone or in combination with immunotherapy. We think that this is because the importance of dose, schedule, and tumor model dependence of chemotherapy-activated anti-tumor immunity is under-appreciated. Here, we review immune modulation function of representative chemotherapy agents and propose a model of immunogenic chemotherapy-induced long-lasting responses that rely on synergetic interaction between killing tumor cells and inducing anti-tumor immunity. We comb through several chemotherapy treatment schedules, and identify the needs for chemotherapy dose and schedule optimization and combination therapy with immunotherapy when chemotherapy dosage or immune responsiveness is too low. We further review tumor cell intrinsic factors that affect the optimal chemotherapy dose and schedule. Lastly, we review the biomarkers indicating responsiveness to chemotherapy and/or immunotherapy treatments. A deep understanding of how chemotherapy activates anti-tumor immunity and how to monitor its responsiveness can lead to the development of more effective chemotherapy or chemo-immunotherapy, thereby improving the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Huang
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qinghuan Ren
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leixiang Yang
- Cancer Center, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Di Cui
- Cancer Center, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenyang Ma
- Department of Internal Medicine of Traditional Chinese Medicine, The Second People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yueliang Zheng
- Cancer Center, Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Wu
- Cancer Center, The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|