1
|
Carlier Y, Dumonteil E, Herrera C, Waleckx E, Tibayrenc M, Buekens P, Truyens C, Muraille E. Coinfection by multiple Trypanosoma cruzi clones: a new perspective on host-parasite relationship with consequences for pathogenesis and management of Chagas disease. Microbiol Mol Biol Rev 2025:e0024224. [PMID: 40116484 DOI: 10.1128/mmbr.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
SUMMARYChagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi (Tc), infecting 6-7 million people. It is transmitted by insect vectors, orally, through infected tissues, or congenitally. Tc infection can progress toward chronic cardiac and/or digestive severe and fatal CD in 20%-40% of patients. Tc exhibits an important genetic and phenotypic intraspecies diversity and a preponderant clonal population structure. The impact of multiclonal coinfections has been little studied in CD patients. Relationships between the currently used discrete typing unit (DTU)-based classification of Tc lineages and the occurrence of the different clinical forms of CD, its congenital transmission, as well as the efficacy of trypanocidal molecules (benznidazole and nifurtimox) could not be established. In this review, we revisit the different aspects of Tc diversity and analyze the impact of infections with multiple clones and their variants on the dynamic and pathogenesis of CD and its maternal-fetal transmission. We propose to call "cruziome" all the Tc clones and their variants infecting a given host and provide strong evidence that (i) multiclonal Tc infections are likely the rule rather than the exception; (ii) each "cruziome" is associated with a unique combination of virulence factors, tissular tropisms, and host immune responses; (iii) accordingly, some particularly harmful "cruziomes" likely trigger the occurrence and progression of CD and might also favor the congenital transmission of parasites. We propose that our concept of "cruziome" should be taken into consideration because of its practical consequences in epidemiological studies, laboratory diagnosis, clinical management, and treatment of CD.
Collapse
Affiliation(s)
- Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Claudia Herrera
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán (UADY), Mérida, Mexico
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Michel Tibayrenc
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Pierre Buekens
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d'Immunologie et de Microbiologie (NARILIS), Université de Namur, Namur, Belgium
| |
Collapse
|
2
|
Chao X, Guo L, Hu M, Ye M, Fan Z, Luan K, Chen J, Zhang C, Liu M, Zhou B, Zhang X, Li Z, Luo Q. Abnormal DNA methylation of EBF1 regulates adipogenesis in chicken. BMC Genomics 2025; 26:275. [PMID: 40114082 PMCID: PMC11927125 DOI: 10.1186/s12864-025-11464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND DNA methylation influences gene expression and is involved in numerous biological processes, including fat production. It is involved in lipid generation in numerous animal species, including poultry. However, the effect of DNA methylation on adipogenesis in chickens remains unclear. RESULTS A total of 12 100-day-old chickens were divided into high and low-fat groups based on their abdominal fat ratios. Subsequently, genome-wide bisulfite sequencing (WGBS) was performed on their abdominal fat, and 1877 differentially methylated region (DMR) genes were identified, among which SLC45A3, EBF1, PLA2G15, and ACAD9 were associated with lipid metabolism. Interestingly, EBF1 showed a lower level of DNA methylation and higher mRNA expression in the low-fat group, as determined by comprehensive RNA-seq analysis. Cellular verification showed that EBF1 expression was upregulated by 5-azacytidine (5-Aza) and downregulated by betaine. EBF1 facilitated the differentiation of immortalized chicken preadipocyte 1 (ICP-1) through the PPAR-γ pathway, thereby affecting chicken adipogenesis. CONCLUSION A combination of WGBS and RNA-seq analyses revealed 48 DMGs in the abdominal fat tissue of chickens. Notably, the DNA methylation status of EBF1 was inversely related to its mRNA expression. Mechanistically, DNA methylation regulates EBF1 expression, which in turn mediates the differentiation of ICP-1 through the PPARγ pathway. This study provides a theoretical framework for investigating the effects of DNA methylation on adipogenesis in chickens.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lijin Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Meiling Hu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Mao Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kang Luan
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Manqing Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhenhui Li
- College of Animal Science, South China Agricultural University, Guangzhou, China.
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, China.
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
3
|
Núñez-Ríos DL, Nagamatsu ST, Martínez-Magaña JJ, Hurd Y, Rompala G, Krystal JH, Montalvo-Ortiz JL. Mapping the epigenomic landscape of post-traumatic stress disorder in human cortical neurons. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315258. [PMID: 39484232 PMCID: PMC11527063 DOI: 10.1101/2024.10.11.24315258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The study conducted a comprehensive genome-wide analysis of differential 5mC and 5hmC modifications at both CpG and non-CpG sites in postmortem orbitofrontal neurons from 25 PTSD cases and 13 healthy controls. It was observed that PTSD patients exhibit a greater number of differential 5hmC sites compared to 5mC sites. Specifically, individuals with PTSD tend to show hyper-5mC/5hmC at CpG sites, particularly within CpG islands and promoter regions, and hypo-5mC/5hmC at non-CpG sites, especially within intragenic regions. Functional enrichment analysis indicated distinct yet interconnected roles for 5mC and 5hmC in PTSD. The 5mC marks primarily regulate cell-cell adhesion processes, whereas 5hmC marks are involved in embryonic morphogenesis and cell fate commitment. By integrating published PTSD findings from central and peripheral tissues through multi-omics approaches, several biological mechanisms were prioritized, including developmental processes, HPA axis regulation, and immune responses. Based on the consistent enrichment in developmental processes, we hypothesize that if epigenetic changes occur during early developmental stages, they may increase the risk of developing PTSD following trauma exposure. Conversely, if these epigenetic changes occur in adulthood, they may influence neuronal apoptosis and survival mechanisms.
Collapse
Affiliation(s)
- Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Jose Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Yasmin Hurd
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
4
|
Jia S, Wang X, Wang G, Wang X. Mechanism and application of β-adrenoceptor blockers in soft tissue wound healing. Med Res Rev 2024; 44:422-452. [PMID: 37470332 DOI: 10.1002/med.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Soft tissue damage stimulates sympathetic nerves to release large amounts of catecholamine hormones which bind to β-adrenergic receptors (β-ARs) on the cell membrane surface. It activates the downstream effector molecules and impairs soft tissue wound healing. β-blockers specifically inhibit β-ARs activation in acute/chronic skin lesions and ulcerative hemangiomas. They also accelerate soft tissue wound healing by shortening the duration of inflammation, speeding keratinocyte migration and reepithelialization, promoting wound contraction and angiogenesis, and inhibiting bacterial virulence effects. In addition, β-blockers shorten wound healing periods in patients with severe thermal damage by reducing the hypermetabolic response. While β-blockers promote/inhibit corneal epithelial cell regeneration and restores limbal stem/progenitor cells function, it could well accelerate/delay corneal wound healing. Given these meaningful effects, a growing number of studies are focused on examining the efficacy and safety of β-blockers in soft tissue wound repair, including acute and chronic wounds, severe thermal damage, ulcerated infantile hemangioma, corneal wounds, and other soft tissue disorders. However, an intensive investigation on their acting mechanisms is imperatively needed. The purpose of this article is to summerize the roles of β-blockers in soft tissue wound healing and explore their clinical applications.
Collapse
Affiliation(s)
- Shasha Jia
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xueya Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Guowei Wang
- Department of Stomatology, No. 971 Hospital of the Chinese Navy, Qingdao, Shandong, People's Republic of China
| | - Xiaojing Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
5
|
Ferreira JM, dos Santos BRC, de Moura EL, dos Santos ACM, Vencioneck Dutra JC, Figueiredo EVMDS, de Lima Filho JL. Narrowing the Relationship between Human CCR5 Gene Polymorphisms and Chagas Disease: Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:1677. [PMID: 37629534 PMCID: PMC10455882 DOI: 10.3390/life13081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Our aim was to carry out a qualitative and quantitative synthesis of the influence of CCR5 genetic variants on Chagas disease (CD) through a systematic review. A total of 1197 articles were analyzed, and eleven were included in the review. A meta-analysis was conducted along with principal component analyses (PCAs). The polymorphisms found were analyzed using the SNP2TFBS tool to identify possible variants that influence the interaction with gene binding sites. Eleven studied variants were identified: rs2856758, rs2734648, rs1799987, rs1799988, rs41469351, rs1800023, rs1800024, Δ32/rs333, rs3176763, rs3087253 and rs11575815. The studies analyzed were published between 2001 and 2019, conducted in Argentina, Brazil, Spain, Colombia and Venezuela, and included Argentine, Brazilian, Colombian, Peruvian and Venezuelan patients. Eight polymorphisms were subjected to the meta-analysis, of which six were associated with the development of the cardiac form of CD: rs1799987-G/G and G/A in the dominance model and G/G in the recessiveness model; rs2856758-A/G in the codominance model; rs2734648-T/T and T/G in the dominance model; rs1799988-T/T in both the codominance and recessiveness models; rs1800023-G allele and the G/G genotype in the codominance and recessiveness models, and the G/G and G/A genotypes in the dominance model; and rs1800024-T allele. The PCA analyses were able to indicate the relationships between the alleles and the genotypes of the polymorphisms. The SNP2TFBS tool identified rs1800023 as an influencer of the Spi1 transcription factor (p < 0.05). A correlation was established between the alleles associated with the cardiac form of CD in this review, members of the C haplotype of the gene (HHC-TGTG), and the cardiac form of CD.
Collapse
Affiliation(s)
- Jean Moisés Ferreira
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Barbara Rayssa Correia dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Ana Caroline Melo dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Jean Carlos Vencioneck Dutra
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Elaine Virgínia Martins de Sousa Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - José Luiz de Lima Filho
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
6
|
Brochet P, Ianni B, Nunes JPS, Frade AF, Teixeira PC, Mady C, Ferreira LRP, Kuramoto A, Pissetti CW, Saba B, Cândido DDS, Dias F, Sampaio M, Marin-Neto JA, Fragata A, Zaniratto RC.F, Siqueira S, Peixoto GDL, Rigaud VOC, Buck P, Almeida RR, Lin-Wang HT, Schmidt A, Martinelli M, Hirata MH, Donadi E, Rodrigues Junior V, Pereira AC, Kalil J, Spinelli L, Cunha-Neto E, Chevillard C. Blood DNA methylation marks discriminate Chagas cardiomyopathy disease clinical forms. Front Immunol 2022; 13:1020572. [PMID: 36248819 PMCID: PMC9558220 DOI: 10.3389/fimmu.2022.1020572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Chagas disease is a parasitic disease from South America, affecting around 7 million people worldwide. Decades after the infection, 30% of people develop chronic forms, including Chronic Chagas Cardiomyopathy (CCC), for which no treatment exists. Two stages characterized this form: the moderate form, characterized by a heart ejection fraction (EF) ≥ 0.4, and the severe form, associated to an EF < 0.4. We propose two sets of DNA methylation biomarkers which can predict in blood CCC occurrence, and CCC stage. This analysis, based on machine learning algorithms, makes predictions with more than 95% accuracy in a test cohort. Beyond their predictive capacity, these CpGs are located near genes involved in the immune response, the nervous system, ion transport or ATP synthesis, pathways known to be deregulated in CCCs. Among these genes, some are also differentially expressed in heart tissues. Interestingly, the CpGs of interest are tagged to genes mainly involved in nervous and ionic processes. Given the close link between methylation and gene expression, these lists of CpGs promise to be not only good biomarkers, but also good indicators of key elements in the development of this pathology.
Collapse
Affiliation(s)
- Pauline Brochet
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Barbara Ianni
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - João P. S. Nunes
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Amanda F. Frade
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Priscila C. Teixeira
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Charles Mady
- Myocardiopathies and Aortic Diseases Unit, Heart Institute, Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ludmila R. P. Ferreira
- RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreia Kuramoto
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cristina W. Pissetti
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Bruno Saba
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Darlan D. S. Cândido
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Fabrício Dias
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Sampaio
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - José A. Marin-Neto
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Abílio Fragata
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Ricardo C .F. Zaniratto
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sergio Siqueira
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Giselle D. L. Peixoto
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vagner O. C. Rigaud
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paula Buck
- Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rafael R. Almeida
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - André Schmidt
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Martino Martinelli
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario H. Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eduardo Donadi
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | | | - Alexandre C. Pereira
- Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Lionel Spinelli
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Christophe Chevillard
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| |
Collapse
|