1
|
Chan HY, Robertson SA. Seminal fluid effects on uterine receptivity to embryo implantation: transcriptomic strategies to define molecular mechanisms. Reprod Fertil Dev 2025; 37:RD24162. [PMID: 40100824 DOI: 10.1071/rd24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Embryo implantation requires both a developmentally competent embryo and a receptive uterus. Impaired uterine receptivity is a common constraint on implantation success and reproductive outcome. Ovarian steroid hormones oestrogen and progesterone play a central role in establishing uterine receptivity, but other factors also contribute. One additional regulating factor is male partner seminal fluid. However, the full physiological impacts of seminal fluid on uterine receptivity and the specific molecular pathways involved are not yet completely defined. New advances in RNA-sequencing technologies provide a powerful means to examine how uterine tissues and cells respond to seminal fluid contact. Findings utilising sequencing technology provide strong cellular and molecular evidence in humans and mice that seminal fluid contact around the time of ovulation drives immune and vascular changes with potential to affect endometrial receptivity in the peri-implantation phase. This approach has led to the discovery of novel mediators and regulatory factors subsequently shown to facilitate embryo implantation in genetic mouse models, enabling functional validation. Here, we summarise the evidence from recent microarray and RNA-sequencing findings that seminal fluid contact can directly and indirectly impact the transcriptional state of endometrial tissue during the implantation window in mice and also in humans. Progress in elucidating the female reproductive tract response to seminal fluid will improve understanding of male partner effects on endometrial receptivity, and the knowledge gained will have practical applications for achieving healthy pregnancy and offspring outcomes.
Collapse
Affiliation(s)
- Hon Y Chan
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Exploring the Immunological Aspects and Treatments of Recurrent Pregnancy Loss and Recurrent Implantation Failure. Int J Mol Sci 2025; 26:1295. [PMID: 39941063 PMCID: PMC11818386 DOI: 10.3390/ijms26031295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more consecutive pregnancy losses before 24 weeks of gestation. It affects 3-5% of women who are attempting to conceive. RPL can stem from a variety of causes and is frequently associated with psychological distress and a diminished quality of life. By contrast, recurrent implantation failure (RIF) refers to the inability to achieve a successful pregnancy after three or more high-quality embryo transfers or at least two instances of egg donation. RIF shares several causative factors with RPL. The immunological underpinnings of these conditions involve alterations in uterine NK cells, reductions in M2 macrophages and myeloid-derived suppressor cells, an increased Th1/Th2 ratio, a decreased Treg/Th17 ratio, the presence of shared ≥3 HLA alleles between partners, and autoimmune disorders. Various therapeutic approaches have been employed to address these immunological concerns, achieving varying degrees of success, although some therapies remain contentious within the medical community. This review intends to explore the immunological factors implicated in RPL and RIF and to analyze the immunological treatments employed for these conditions, which may include steroids, intravenous immunoglobulins, calcineurin inhibitors, anti-TNF antibodies, intralipid infusions, granulocyte colony-stimulating factor, and lymphocyte immunotherapy.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (J.V.G.); (C.V.D.S.); (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (J.V.G.); (C.V.D.S.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (J.V.G.); (C.V.D.S.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic; (J.V.G.); (C.V.D.S.); (M.H.)
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, 779 00 Olomouc, Czech Republic
| |
Collapse
|
3
|
Strbo N, Rodriguez S, Padula L, Fisher E, Lyons A, Rodriguez C, Rivas K, Ibrahim M, Paidas M, Attia G. Assessment of immune cells in the uterine fluid at the time of the embryo transfer. Am J Reprod Immunol 2024; 91:e13842. [PMID: 38650366 DOI: 10.1111/aji.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 04/28/2024] [Indexed: 04/25/2024] Open
Abstract
PROBLEM Although endometrial receptivity is a key factor in influencing implantation in both naturally conceived and assisted reproductive technology (ART) cycles, very little is known about the endometrium milieu around the time of implantation. Previous studies have demonstrated the presence of several cytokines in the endometrium that affect implantation. However, there is lacking data about the presence of immune cell subtypes within the endometrium and in the uterine cavity at the time of implantation. METHOD OF STUDY This study was approved by the Institutional Review Board (# 225589). The study was designed as a prospective observational cohort study between May 2021 and December 2022 at a single academic-based fertility center. All patients underwent at least one In Vitro Fertilization (IVF) cycle and have frozen embryos. Twenty-four participants were recruited for this study which was conducted during the frozen embryo transfer (FET) cycle regardless of the outcome of previous cycles. Two samples were acquired from each subject, denoted as lower and upper. A trial transfer catheter was introduced under ultrasound guidance into the lower uterine segment. Upon removal, the tip was rinsed in IMDM medium containing 10% FBS (lower uterus). A transfer catheter was then loaded with the embryo that was placed in the upper uterus under ultrasound guidance. The tip of the transfer catheter was rinsed in separate aliquot of the above media (upper uterus). After centrifugation, pelleted cells were stained for the following surface markers: CD45, CD3, CD19, CD4, CD8, gamma delta TCR, CD25, CD127, CD66b, CD14, CD16, CD56 and acquired on Sony SP6800 Spectral Analyzer. RESULTS Upon staining the pelleted cells, we were able to identify viable leukocytes from samples obtained from both, upper and lower uterus (0.125 × 106 cells ± SD 0.32), (0.123 × 106 cells ± SD 0.12), respectively. Among total viable cells, there was no significant difference in both percent and number of CD45+ cells between the upper and lower uterus (9.88% ± 6.98 SD, 13.67% ± 9.79 SD, p = .198) respectively. However, there was significantly higher expression of CD3+ (p = .006), CD19+ (p = .032) and CD14+ (p = .019) cells in samples collected from upper compared to lower uterus. Within all CD3+ cells, we found that gamma delta T cells (GDT) were the major population of T cells in both upper and lower uterus. In contrast, CD8+ T cells were significantly higher in the lower uterus when compared to the upper uterus (p = .009). There was no statistically significant difference in the expression of CD4+ T cells, T regulatory cells (CD4+CD25+CD127-), NK cells (CD56+), neutrophils (CD66b+) and FcγRIII+ cells (CD16+) between upper and lower uterus. CONCLUSIONS We believe the immune milieu at the time of embryo transfer will affect implantation. Understanding the composition of immune cells will guide further research in identifying optimal immune milieus that favor implantation. Comprehensive analysis of endometrium is expected to lead to new diagnostic and therapeutic approaches to improve IVF outcomes.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suset Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Annabel Lyons
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carolina Rodriguez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katelyn Rivas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mohammed Ibrahim
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - George Attia
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology, and Infertility, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
4
|
Xie N, Wang F, Chen D, Zhou J, Xu J, Qu F. Immune dysfunction mediated by the competitive endogenous RNA network in fetal side placental tissue of polycystic ovary syndrome. PLoS One 2024; 19:e0300461. [PMID: 38512862 PMCID: PMC10956758 DOI: 10.1371/journal.pone.0300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.
Collapse
Affiliation(s)
- Ningning Xie
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fangfang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danqing Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Mihalic ZN, Kloimböck T, Cosic-Mujkanovic N, Valadez-Cosmes P, Maitz K, Kindler O, Wadsack C, Heinemann A, Marsche G, Gauster M, Pollheimer J, Kargl J. Myeloperoxidase enhances the migration and invasion of human choriocarcinoma JEG-3 cells. Redox Biol 2023; 67:102885. [PMID: 37776707 PMCID: PMC10556814 DOI: 10.1016/j.redox.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundant proteins in neutrophil granules. It catalyzes the production of reactive oxygen species, which are important in inflammation and immune defense. MPO also binds to several proteins, lipids, and DNA to alter their function. MPO is present at the feto-maternal interface during pregnancy, where neutrophils are abundant. In this study, we determined the effect of MPO on JEG-3 human choriocarcinoma cells as a model of extravillous trophoblasts (EVTs) during early pregnancy. We found that MPO was internalized by JEG-3 cells and localized to the cytoplasm and nuclei. MPO internalization and activity enhanced JEG-3 cell migration and invasion, whereas this effect was impaired by pre-treating cells with heparin, to block cellular uptake, and MPO-activity inhibitor 4-ABAH. This study identifies a novel mechanism for the effect of MPO on EVT function during normal pregnancy and suggests a potential role of MPO in abnormal pregnancies.
Collapse
Affiliation(s)
- Z N Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - T Kloimböck
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - N Cosic-Mujkanovic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - P Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - K Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - O Kindler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - C Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - A Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - G Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - M Gauster
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-Fetal Immunology Group, Medical University of Vienna, Austria
| | - J Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|