1
|
Kori M, Buchuk R, Goldzweig O, Weisband YL, Tal N, Ben-Tov A, Ledderman N, Matz E, Freiman M, Dotan I, Turner D, Shouval DS. Familial Mediterranean fever in patients with inflammatory bowel diseases: a nationwide study from the epi-IIRN. Rheumatology (Oxford) 2025; 64:1347-1354. [PMID: 38814796 DOI: 10.1093/rheumatology/keae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) and familial Mediterranean fever (FMF) are auto-inflammatory diseases with common clinical and biological features. We aimed to determine their association and characterize the natural history in patients with both diagnoses. METHODS Utilizing data from the epi-IIRN cohort, which includes 98% of Israel's population, we calculated the adjusted prevalence of FMF among IBD patients vs non-IBD controls. Case ascertainment of IBD was determined according to validated algorithms and for FMF by ICD-9 codes and colchicine purchase. RESULTS In total, 34 375 IBD patients (56% Crohn's disease [CD] and 44% ulcerative colitis [UC]) were compared with 93 602 matched controls. Among IBD patients, 157 (0.5%) had FMF compared with 160 (0.2%) of non-IBD controls (OR = 2.68 [95%CI 2.2-3.3]; P < 0.001). Pediatric-onset IBD had a higher prevalence of FMF compared with adult-onset IBD (30/5243 [0.6%] vs 127/29 132 [0.4%]), without statistical significance (OR = 1.31 [0.88-1.96]; P = 0.2). FMF was more prevalent in CD (114/19 264 [0.6%]) than UC (43/15 111 [0.3%]; OR = 2.1 [1.5-3.0], P < 0.001). FMF diagnosis preceded that of IBD in 130/157 cases (83%). FMF was associated with a more severe disease activity in UC patients at diagnosis, but not in CD patients. Outcomes were comparable between patients with CD+FMF vs CD alone; however, in patients with UC+FMF, time to biologic treatment was shorter. CONCLUSION FMF is more prevalent in IBD patients than in the general population, particularly in CD. The diagnosis of FMF precedes the diagnosis of IBD in most cases, and may be associated with a more severe course in UC.
Collapse
Affiliation(s)
- Michal Kori
- Pediatric Gastroenterology, Kaplan Medical Center, Rehovot, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Buchuk
- Juliet Keidan Institute of Pediatric Gastroenterology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Goldzweig
- Pediatric Rheumatology, Kaplan Medical Center, Rehovot, Israel
| | | | - Noa Tal
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ben-Tov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Maccabi Health Services, Tel-Aviv, Israel
| | | | - Eran Matz
- Leumit Health Services, Tel-Aviv, Israel
| | - Moti Freiman
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Iris Dotan
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Dan Turner
- Juliet Keidan Institute of Pediatric Gastroenterology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
S. DSN, Sundararajan V. Gene expression analysis reveals mir-29 as a linker regulatory molecule among rheumatoid arthritis, inflammatory bowel disease, and dementia: Insights from systems biology approach. PLoS One 2025; 20:e0316584. [PMID: 39813219 PMCID: PMC11734936 DOI: 10.1371/journal.pone.0316584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets. METHODOLOGY Ten microarray datasets each for RA, and IBD, and nine datasets for dementia were obtained from Gene Expression Omnibus. We identified common differentially expressed genes (DEGs) and constructed a gene-gene interaction network. Subsequently, topology analysis for hub gene identification, cluster and functional enrichment, and regulatory network analysis were performed. The hub genes were then validated using independent microarray datasets from Gene Expression Omnibus. RESULTS A total of 198 common DEGs were identified from which CD44, FN1, IGF1, COL1A2, and POSTN were identified as the hub genes in our study. These hub genes were mostly enriched in significant processes and pathways like tissue development, collagen binding, cell adhesion, regulation of ERK1/2 cascade, PI3K-AKT signaling, and cell surface receptor signaling. Key transcription factors TWIST2, CEBPA, EP300, HDAC1, HDAC2, NFKB1, RELA, TWIST1, and YY1 along with the miRNA hsa-miR-29 were found to regulate the expression of the hub genes significantly. Among these regulatory molecules, miR-29 emerged as a significant linker molecule, bridging the molecular mechanisms of RA, IBD, and dementia. Validation of our hub genes demonstrated a similar expression trend in the independent datasets used for our study. CONCLUSION Our study underscores the significant role of miR-29 in modulating the expression of hub genes and the associated transcription factors, which are crucial in the comorbidity status of RA, dementia, and IBD. This regulatory mechanism highlights miR-29 as a key player in the pathogenesis of these comorbid diseases.
Collapse
Affiliation(s)
- Devi Soorya Narayana S.
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Konieczny MJ, Omarov M, Zhang L, Malik R, Richardson TG, Baumeister SE, Bernhagen J, Dichgans M, Georgakis MK. The genomic architecture of circulating cytokine levels points to drug targets for immune-related diseases. Commun Biol 2025; 8:34. [PMID: 39794498 PMCID: PMC11724035 DOI: 10.1038/s42003-025-07453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Circulating cytokines orchestrate immune reactions and are promising drug targets for immune-mediated and inflammatory diseases. Exploring the genetic architecture of circulating cytokine levels could yield key insights into causal mediators of human disease. Here, we performed genome-wide association studies (GWAS) for 40 circulating cytokines in meta-analyses of 74,783 individuals. We detected 359 significant associations between cytokine levels and variants in 169 independent loci, including 150 trans- and 19 cis-acting loci. Integration with transcriptomic data point to key regulatory mechanisms, such as the buffering function of the Atypical Chemokine Receptor 1 (ACKR1) acting as scavenger for multiple chemokines and the role of tumor necrosis factor receptor-associated factor 1 (TRAFD1) in modulating the cytokine storm triggered by TNF signaling. Applying Mendelian randomization (MR), we detected a network of complex cytokine interconnections with TNF-b, VEGF, and IL-1ra exhibiting pleiotropic downstream effects on multiple cytokines. Drug target cis-MR using 2 independent proteomics datasets paired with colocalization revealed G-CSF/CSF-3 and CXCL9/MIG as potential causal mediators of asthma and Crohn's disease, respectively, but also a potentially protective role of TNF-b in multiple sclerosis. Our results provide an overview of the genetic architecture of circulating cytokines and could guide the development of targeted immunotherapies.
Collapse
Affiliation(s)
- Marek J Konieczny
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Murad Omarov
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Lanyue Zhang
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Tom G Richardson
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHKMunich), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Cardiovascular Research (DZHKMunich), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Aebisher D, Bartusik-Aebisher D, Przygórzewska A, Oleś P, Woźnicki P, Kawczyk-Krupka A. Key Interleukins in Inflammatory Bowel Disease-A Review of Recent Studies. Int J Mol Sci 2024; 26:121. [PMID: 39795980 PMCID: PMC11719876 DOI: 10.3390/ijms26010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an immune disorder of the gastrointestinal tract with a complex aetiopathogenesis, whose development is influenced by many factors. The prevalence of IBD is increasing worldwide, in both industrialized and developing countries, making IBD a global health problem that seriously affects quality of life. In 2019, there were approximately 4.9 million cases of IBD worldwide. Such a large number of patients entails significant healthcare costs. In the treatment of patients with IBD, the current therapeutic target is mucosal healing, as intestinal inflammation often persists despite resolution of abdominal symptoms. Treatment strategies include amino salicylates, corticosteroids, immunosuppressants, and biologic therapies that focus on reducing intestinal mucosal inflammation, inducing and prolonging disease remission, and treating complications. The American College of Gastroenterology (ACG) guidelines also indicate that nutritional therapies may be considered in addition to other therapies. However, current therapeutic approaches are not fully effective and are associated with various limitations, such as drug resistance, variable efficacy, and side effects. As the chronic inflammation that accompanies IBD is characterized by infiltration of a variety of immune cells and increased expression of a number of pro-inflammatory cytokines, including IL-6, TNF-α, IL-12, IL-23 and IFN-γ, new therapeutic approaches are mainly targeting immune pathways. Interleukins are one of the molecular targets in IBD therapy. Interleukins and related cytokines serve as a means of communication for innate and adaptive immune cells, as well as nonimmune cells and tissues. These cytokines play an important role in the pathogenesis and course of IBD, making them promising targets for current and future therapies. In our work, we review scientific studies published between January 2022 and November 2024 describing the most important interleukins involved in the pathogenesis of IBD. Some of the papers present new data on the precise role that individual interleukins play in IBD. New clinical data have also been provided, particularly on blocking interleukin 23 and interleukin 1beta. In addition, several new approaches to the use of different interleukins in the treatment of IBD have been described in recent years.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| |
Collapse
|
5
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
7
|
Hall CHT, de Zoeten EF. Understanding very early onset inflammatory bowel disease (VEOIBD) in relation to inborn errors of immunity. Immunol Rev 2024; 322:329-338. [PMID: 38115672 PMCID: PMC11044353 DOI: 10.1111/imr.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Inflammatory bowel diseases (IBD) are multifactorial diseases which are caused by the combination of genetic predisposition, exposure factors (environmental and dietary), immune status, and dysbiosis. IBD is a disease which presents at any age, ranging from newborns to the elderly. The youngest of the pediatric IBD population have a more unique presentation and clinical course and may have a different etiology. Very early onset IBD (VEOIBD) patients, designated as those diagnosed prior the age of 6, have distinct features which are more frequent in this patient population including increased incidence of monogenetic causes for IBD (0%-33% depending on the study). This proportion is increased in the youngest subsets, which is diagnosed prior to the age of 2. To date, there are approximately 80 monogenic causes of VEOIBD that have been identified and published. Many of these monogenic causes are inborn errors of immunity yet the majority of VEOIBD patients do not have an identifiable genetic cause for their disease. In this review, we will focus on the clinical presentation, evaluation, and monogenic categories which have been associated with VEOIBD including (1) Epithelial cell defects (2) Adaptive immune defects, (3) Innate Immune/Bacterial Clearance and Recognition defects, and (4) Hyperinflammatory and autoinflammatory disorders. We will highlight differential diagnosis of VEOIBD presentations, as well as evaluation and treatment, which will be helpful for those who study and care for VEOIBD patients outside of the pediatric gastroenterology field. This is a fast-moving field of research which has grown significantly based on knowledge that we gain from our patients. These scientific findings have identified novel mucosal biology pathways and will continue to inform our understanding of gastrointestinal biology.
Collapse
Affiliation(s)
- Caroline H. T. Hall
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edwin F. de Zoeten
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
9
|
Ye S, Lyu Y, Chen L, Wang Y, He Y, Li Q, Tian L, Liu F, Wang X, Ai F. Construction of a molecular inflammatory predictive model with histone modification-related genes and identification of CAMK2D as a potential response signature to infliximab in ulcerative colitis. Front Immunol 2024; 14:1282136. [PMID: 38274809 PMCID: PMC10808628 DOI: 10.3389/fimmu.2023.1282136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Ulcerative colitis (UC) is a lifelong inflammatory disease affecting the rectum and colon with numerous treatment options that require an individualized treatment plan. Histone modifications regulate chromosome structure and gene expression, resulting in effects on inflammatory and immune responses. However, the relationship between histone modification-related genes and UC remains unclear. Methods Transcriptomic data from GSE59071 and GSE66407 were obtained from the Gene Expression Omnibus (GEO), encompassing colonic biopsy expression profiles of UC patients in inflamed and non-inflamed status. Differentially expressed gene (DEG) analyses, functional enrichment analyses, weighted gene co-expression network analysis (WGCNA), and random forest were performed to identify histone modification-related core genes associated with UC inflammation. Features were screened through the least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), establishing a molecular inflammatory predictive model using logistic regression. The model was validated in the GSE107499 dataset, and the performance of the features was assessed using receiver operating characteristic (ROC) and calibration curves. Immunohistochemistry (IHC) staining of colonic biopsy tissues from UC patients treated with infliximab was used to further confirm the clinical application value. Univariate logistic regression on GSE14580 highlighted features linked to infliximab response. Results A total of 253 histone modification-related DEGs were identified between inflammatory and non-inflammatory patients with UC. Seven key genes (IL-1β, MSL3, HDAC7, IRF4, CAMK2D, AUTS2, and PADI2) were selected using WGCNA and random forest. Through univariate logistic regression, three core genes (CAMK2D, AUTS2, and IL-1β) were further incorporated to construct the molecular inflammatory predictive model. The area under the curve (AUC) of the model was 0.943 in the independent validation dataset. A significant association between CAMK2D protein expression and infliximab response was observed, which was validated in another independent verification set of GSE14580 from the GEO database. Conclusion The molecular inflammatory predictive model based on CAMK2D, AUTS2, and IL-1β could reliably distinguish the mucosal inflammatory status of UC patients. We further revealed that CAMK2D was a predictive marker of infliximab response. These findings are expected to provide a new evidence base for personalized treatment and management strategies for UC patients.
Collapse
Affiliation(s)
- Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Libin Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yue He
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Quansi Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
11
|
Gole B, Pernat C, Jezernik G, Potočnik U. The expression IL1B correlates negatively with the clinical response to adalimumab in Crohn's disease patients: An ex vivo approach using peripheral blood mononuclear cells. Life Sci 2023:121822. [PMID: 37257580 DOI: 10.1016/j.lfs.2023.121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
AIMS Understanding of the molecular mechanisms of anti-TNFα therapy non-response and reliable biomarkers are essential for personalized medicine in Crohn's disease (CD) patients. Using RNA-seq data adjusted for deconvoluted fractions of peripheral blood cells, we recently described MMD gene, coding for a monocyte to macrophage differentiation factor, as a biomarker of adalimumab (anti-TNFα) therapy response in CD. The results also suggest that cell subtype-specific biomarkers may be superior to those measured in bulk peripheral blood. Here, we used functional cell model to further investigate the role of the monocyte to macrophage differentiation in adalimumab treatment response and evaluate monocyte/macrophage specific expression of the inflammatory cytokines as potential biomarkers for (non)response to adalimumab in CD patients. MAIN METHODS The peripheral monocytes of CD patients responsive and non-responsive to adalimumab were isolated, differentiated into macrophages, and exposed to inflammation and concurrent adalimumab therapy in vitro. The results were correlated to the clinical response of the donor patients. KEY FINDINGS Correlation is shown of the expression of two macrophage differentiation related genes- CD68 and MMD, with the expression of the inflammatory cytokines TNF, IL1B, IL6 and CXCL8. Monocytes and in vitro differentiated macrophages of adalimumab non-responders express more inflammatory cytokines than those of responders. The biggest difference was in the IL1B expression. Additionally, IL1B expression in the in vitro differentiated macrophages of CD patients correlates negatively with their clinical response to adalimumab. SIGNIFICANCE We propose the IL1B expression in the macrophages as a possible biomarker for adalimumab response in CD patients.
Collapse
Affiliation(s)
- Boris Gole
- University of Maribor, Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Cvetka Pernat
- Maribor University Medical Centre, Division of Internal Medicine, Department of Gastroenterology, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia
| | - Gregor Jezernik
- University of Maribor, Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Uroš Potočnik
- University of Maribor, Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, Taborska ulica 8, SI-2000 Maribor, Slovenia; University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory for Biochemistry, Molecular Biology and Genomics, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
12
|
Levine AE, Mark D, Smith L, Zheng HB, Suskind DL. Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics 2023; 15:969. [PMID: 36986830 PMCID: PMC10059893 DOI: 10.3390/pharmaceutics15030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is treated with a variety of immunomodulating and immunosuppressive therapies; however, for the majority of cases, these therapies are not targeted for specific disease phenotypes. Monogenic IBD with causative genetic defect is the exception and represents a disease cohort where precision therapeutics can be applied. With the advent of rapid genetic sequencing platforms, these monogenic immunodeficiencies that cause inflammatory bowel disease are increasingly being identified. This subpopulation of IBD called very early onset inflammatory bowel disease (VEO-IBD) is defined by an age of onset of less than six years of age. Twenty percent of VEO-IBDs have an identifiable monogenic defect. The culprit genes are often involved in pro-inflammatory immune pathways, which represent potential avenues for targeted pharmacologic treatments. This review will provide an overview of the current state of disease-specific targeted therapies, as well as empiric treatment for undifferentiated causes of VEO-IBD.
Collapse
Affiliation(s)
- Anne E. Levine
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dominique Mark
- Department of Pharmacy, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Laila Smith
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Hengqi B. Zheng
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David L. Suskind
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|