1
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. Nat Commun 2025; 16:4393. [PMID: 40355429 PMCID: PMC12069715 DOI: 10.1038/s41467-025-59475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
SARS-CoV-2 hijacks multiple organelles for virion assembly, of which the mechanisms have not been fully understood. Here, we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs are unusual electron-dense and dynamic structures driven by the accessory protein ORF3a via remodeling a specific subset of the trans-Golgi network (TGN) and early endosomal membrane. 3DB formation is conserved in related bat and pangolin coronaviruses but was lost during the evolution to SARS-CoV. During SARS-CoV-2 infection, 3DB recruits the viral structural proteins spike (S) and membrane (M) and undergoes dynamic fusion/fission to maintain the optimal unprocessed-to-processed ratio of S on assembled virions. Disruption of 3DB formation resulted in virions assembled with an abnormal S processing rate, leading to a dramatic reduction in viral entry efficiency. Our study uncovers the crucial role of 3DB in maintaining maximal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA.
| |
Collapse
|
2
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Muhammad I, Contes K, Bility MT, Tang Q. Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses 2025; 17:528. [PMID: 40284971 PMCID: PMC12031425 DOI: 10.3390/v17040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The innate immune response, particularly the interferon-mediated pathway, serves as the first line of defense against viral infections. During virus infection, viral pathogen-associated molecular patterns (PAMPs) are recognized by host pattern recognition receptors (PRRs), triggering downstream signaling pathways. This leads to the activation of transcription factors like IRF3, IRF7, and NF-κB, which translocate to the nucleus and induce the production of type I interferons (IFN-α and IFN-β). Once secreted, type I interferons bind to their receptors (IFNARs) on the surfaces of infected and neighboring cells, activating the JAK-STAT pathway. This results in the formation of the ISGF3 complex (composed of STAT1, STAT2, and IRF9), which translocates to the nucleus and drives the expression of interferon-stimulated genes (ISGs). Some ISGs exert antiviral effects by directly or indirectly blocking infection and replication. Among these ISGs, ISG15 plays a crucial role in the ISGylation process, a ubiquitin-like modification that tags viral and host proteins, regulating immune responses and inhibiting viral replication. However, viruses have evolved counteractive strategies to evade ISG15-mediated immunity and ISGylation. This review first outlines the PAMP-PRR-induced pathways leading to the production of cytokines and ISGs, followed by a summary of ISGylation's role in antiviral defense and viral evasion mechanisms targeting ISG15 and ISGYlation.
Collapse
Affiliation(s)
| | | | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (I.M.); (K.C.); (M.T.B.)
| |
Collapse
|
4
|
Stephens EB, Kunec D, Henke W, Vidal RM, Greishaber B, Saud R, Kalamvoki M, Singh G, Kafle S, Trujillo JD, Ferreyra FM, Morozov I, Richt JA. The Role of the Tyrosine-Based Sorting Signals of the ORF3a Protein of SARS-CoV-2 in Intracellular Trafficking and Pathogenesis. Viruses 2025; 17:522. [PMID: 40284965 PMCID: PMC12031507 DOI: 10.3390/v17040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The open reading frame 3a (ORF3a) is a protein important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (160YNSV163, 211YYQL213, and 233YNKI236), and a previous study has indicated that mutation of the 160YNSV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. Here, we have systematically removed all three tyrosine-based motifs and assessed the importance of each motif or combination of motifs in trafficking to the cell surface. Our results indicate that the 160YNSV163 motif alone was insufficient for ORF3a cell-surface trafficking, while the 211YYQL213 motif was the most important. Additionally, an ORF3a with all three YxxΦ motifs disrupted (ORF3a-[ΔYxxΦ]) was not transported to the cell surface, and LysoIP studies indicate that ORF3a but not ORF3a-[ΔYxxΦ] was present in late endosome/lysosome fractions. A growth-curve analysis of different SARS-CoV-2 viruses expressing the different mutant ORF3a proteins revealed no significant differences in virus replication. Finally, the inoculation of K18hACE-2 mice indicated that the SARS-CoV-2 lacking the three YxxΦ motifs was less pathogenic than the unmodified SARS-CoV-2. These results indicate that the tyrosine motifs of ORF3a contribute to cell-surface expression and SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Edward B. Stephens
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany; (D.K.)
| | - Wyatt Henke
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | | - Brandon Greishaber
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Rabina Saud
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology 2000 Cates Hall, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Franco Matias Ferreyra
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (G.S.); (J.D.T.)
| |
Collapse
|
5
|
Bar-Tana J. mTORC1 syndrome (TorS): unifying paradigm for PASC, ME/CFS and PAIS. J Transl Med 2025; 23:297. [PMID: 40059164 PMCID: PMC11892318 DOI: 10.1186/s12967-025-06220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
Post-acute SarS-Cov2 (PASC), Myalgia encephalomyelitis/Chronic fatigue syndrome (ME/CFS) and Post-acute infection syndrome (PAIS) consist of chronic post-acute infectious syndromes, sharing exhaustive fatigue, post exertional malaise, intermittent pain, postural tachycardia and neuro-cognitive-psychiatric dysfunction. However, the concerned shared pathophysiology is still unresolved in terms of upstream drivers and transducers. Also, risk factors which may determine vulnerability/progression to the chronic phase still remain to be defined. In lack of drivers and a cohesive pathophysiology, the concerned syndromes still remain unmet therapeutic needs. 'mTORC1 Syndrome' (TorS) implies an exhaustive disease entity driven by sustained hyper-activation of the mammalian target of rapamycin C1 (mTORC1), and resulting in a variety of disease aspects of the Metabolic Syndrome (MetS), non-alcoholic fatty liver disease, chronic obstructive pulmonary disease, some cancers, neurodegeneration and other [Bar-Tana in Trends Endocrinol Metab 34:135-145, 2023]. TorS may offer a cohesive insight of PASC, ME/CFS and PAIS drivers, pathophysiology, vulnerability and treatment options.
Collapse
Affiliation(s)
- Jacob Bar-Tana
- Hebrew University Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
6
|
Hinkle JJ, Trychta KA, Wires ES, Osborn RM, Leach JR, Faraz ZF, Svarcbahs R, Richie CT, Dewhurst S, Harvey BK. Subcellular localization of SARS-CoV-2 E and 3a proteins along the secretory pathway. J Mol Histol 2025; 56:98. [PMID: 40025386 PMCID: PMC11872775 DOI: 10.1007/s10735-025-10375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
SARS-CoV-2 E and 3a proteins are important for the assembly, budding, and release of viral particles. These two transmembrane proteins have been implicated in forming channels in the membrane that allow the transport of ions to favor viral replication. During an active infection, both proteins generally localize to the endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), and the Golgi where viral assembly occurs. The ER and Golgi are critical for the proper packaging and trafficking of cellular proteins along the secretory pathways which determine a protein's final destination inside or outside of the cell. The SARS-CoV-2 virus primarily infects epithelial cells that are highly secretory in nature such as those in the lung and gut. Here we quantified the distribution of SARS-CoV-2 E and 3a proteins along the secretory pathways in a human intestinal epithelial cell line. We used NaturePatternMatch to demonstrate that epitope-tagged E and 3a proteins expressed alone via transient transfection have a similar immunoreactivity pattern as E and 3a proteins expressed by wild-type viral infection. While E and 3a proteins localized with all selected cellular markers to varying degrees, 3a protein displayed a higher correlation coefficient with the Golgi, early/late endosome, lysosome, and plasma membrane when compared to E protein. This work is the first to provide quantification of the subcellular distribution of E and 3a proteins along the multiple components of the secretory pathway and serves as a basis to develop models for examining how E and 3a alter proteostasis within these structures and affect their function.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Kathleen A Trychta
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Raven M Osborn
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Justin R Leach
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Zoha F Faraz
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Reinis Svarcbahs
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Stephen Dewhurst
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
7
|
Rodrigues TS, Zamboni DS. Inflammasome Activation by RNA Respiratory Viruses: Mechanisms, Viral Manipulation, and Therapeutic Insights. Immunol Rev 2025; 330:e70003. [PMID: 39891396 DOI: 10.1111/imr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Respiratory viruses, including SARS-CoV-2, influenza, parainfluenza, rhinovirus, and respiratory syncytial virus (RSV), are pathogens responsible for lower respiratory tract infections, particularly in vulnerable populations such as children and the elderly. Upon infection, these viruses are recognized by pattern recognition receptors, leading to the activation of inflammasomes, which are essential for mediating inflammatory responses. This review discusses the mechanisms by which these RNA respiratory viruses activate inflammasomes, emphasizing the roles of various signaling pathways and components involved in this process. Additionally, we highlight the specific interactions between viral proteins and inflammasome sensors, elucidating how these viruses manipulate the host immune response to facilitate infection. Understanding the dynamics of inflammasome activation in response to respiratory viruses provides critical insights for developing immunomodulatory therapeutic strategies aimed at mitigating inflammation and improving outcomes in respiratory tract infections.
Collapse
Affiliation(s)
- Tamara S Rodrigues
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Yardeni T, Olali AZ, Chen HW, Wang L, Halton JA, Zenab A, Morrow R, Butic A, Murdock DG, Waymire KG, MacGregor GR, Boursi B, Beier UH, Hancock WW, Wallace DC. Mitochondrial DNA lineages determine tumor progression through T cell reactive oxygen signaling. Proc Natl Acad Sci U S A 2025; 122:e2417252121. [PMID: 39752523 PMCID: PMC11725793 DOI: 10.1073/pnas.2417252121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025] Open
Abstract
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, mtDNAB6 and mtDNANZB, where mtDNANZB mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, mtDNAB6 Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas mtDNANZB Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection. When challenged with melanoma or colon cancer cells, the mtDNANZB mice exhibited strikingly impaired tumor growth while mtDNAB6 mice showed Treg-dependent inhibition of Teff cells and allowed rapid tumor growth. Transcriptional analysis showed that activation of mtDNANZB Teff cells increased mitochondrial gene expression while activation of mtDNANZB Treg cells impaired mitochondrial gene expression and resulted in mtDNANZB Treg cell exhaustion. Induction of the mitochondrially targeted catalytic antioxidant, mCAT, in hematopoietic cells normalized mtDNANZB Treg function in both transplant and tumor models, indicating a key role for mROS in promoting Treg dysfunction. Anti-PD-L1 therapy did not modulate these effects, indicating that modulation of host mitochondrial function provides an independent approach for enhancing tumor cell destruction.
Collapse
Affiliation(s)
- Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel Hashomer5262000, Israel
| | - Arnold Z. Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Hsiao-Wen Chen
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Liqing Wang
- Division of Transplant Immunology, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jeffrey A. Halton
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Angi Zenab
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel Hashomer5262000, Israel
| | - Ryan Morrow
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Arrienne Butic
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Katrina G. Waymire
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697-2300
| | - Grant R. MacGregor
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697-2300
| | - Ben Boursi
- Division of Oncology, Sheba Medical Center, Tel-Hashomer, Tel-Aviv University, Tel Aviv5262000, Israel
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ulf H. Beier
- Immunology, Johnson & Johnson Innovative Medicine, Spring House, PA19477
| | - Wayne W. Hancock
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Transplant Immunology, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
9
|
Wu Y, He L, Li R, Li J, Zhao Q, Shao B. A20 as a Potential Therapeutic Target for COVID-19. Immun Inflamm Dis 2025; 13:e70127. [PMID: 39853876 PMCID: PMC11760982 DOI: 10.1002/iid3.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors. A20, which is widely accepted as a pivotal regulator of inflammation, has been shown to be implicated in the processes of antiviral responses and immunosuppression. Thus, A20 may participate in regulating the pathological processes of COVID-19. METHODS This narrative literature review summarizes recent evidence on the mechanisms of A20 in regulating the pathological processes of COVID-19. We also downloaded single-cell RNA-seq data sets from healthy individuals and patients with varying severities of COVID-19 from the NCBI GEO database to further dissect A20's regulatory mechanisms of these intricate cytokine pathways that are closely associated with SARS-CoV-2 infection. RESULTS A20 might be one of the most critical anti-infectious and anti-inflammatory factors involved in the pathogenesis of COVID-19. It effectively suppresses the immune damage and inflammatory storm caused by viral infection. CONCLUSIONS Understanding the relationship between A20-regulated signaling pathways and pathological processes of COVID-19 can provide insight into potential targets for intervention. Precise regulation of A20 to induce antiviral activity and an anti-inflammatory response could mediate the pathogenesis of COVID-19 and could become an effective treatment.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Lilan He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Rong Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiuxuan Li
- Laboratory of Radiation Biology, Laboratory Medicine Centre, Department of Blood TransfusionThe Second Affiliated HospitalArmy Military Medical UniversityChongqingChina
| | - Qing Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
10
|
Guarnieri JW, Kim J, Wallace DC, Mason CE, Muratani M, Beheshti A. Methodologies for Mitochondrial Omic Profiling During Spaceflight. Methods Mol Biol 2025; 2878:273-291. [PMID: 39546268 DOI: 10.1007/978-1-0716-4264-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
To be able to understand how spaceflight can affect human biology, there is a need for maximizing the amount of information that can be obtained from experiments flown to space. Recently there has been an influx of data obtained from astronauts through multi-omics approaches based on both governmental and commercial spaceflight missions. In addition to data from humans, mitochondrial specific data is gathered for other experiments from rodents and other organisms that are flown in space. This data has started to universally demonstrate that mitochondrial dysfunction is the key regulator associated with increasing health risks associated with spaceflight. This mitochondrial dysfunction can have influence downstream on immune suppression, inflammation, circadian rhythm issues, and more. Due to the space environment, standard methodologies have to be altered for performing mitochondrial specific analysis and in general sample collection for omics. To perform mitochondrial specific analysis and data collection from samples flown to space we will outline the current sample collection methods, processing of the samples, and specific analysis. Specifically we will highlight the different mitochondrial methodologies and challenges involved with research associated with spaceflight.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Douglas C Wallace
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Space Biomedicine, McGowan Institute for Regenerative Medicine, Department of Surgery and Computation and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Topper MJ, Guarnieri JW, Haltom JA, Chadburn A, Cope H, Frere J, An J, Borczuk A, Sinha S, Kim J, Park J, Butler D, Meydan C, Foox J, Bram Y, Richard SA, Epsi NJ, Agan B, Chenoweth JG, Simons MP, Tribble D, Burgess T, Dalgard C, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Beigel K, Widjaja GA, Janssen KA, Lie T, Murdock DG, Angelin A, Soto Albrecht YE, Olali AZ, Cen Z, Dybas J, Priebe W, Emmett MR, Best SM, Kelsey Johnson M, Trovao NS, Clark KB, Zaksas V, Meller R, Grabham P, Schisler JC, Moraes-Vieira PM, Pollett S, Mason CE, Syrkin Wurtele E, Taylor D, Schwartz RE, Beheshti A, Wallace DC, Baylin SB. Lethal COVID-19 associates with RAAS-induced inflammation for multiple organ damage including mediastinal lymph nodes. Proc Natl Acad Sci U S A 2024; 121:e2401968121. [PMID: 39602262 PMCID: PMC11626201 DOI: 10.1073/pnas.2401968121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Lethal COVID-19 outcomes are attributed to classic cytokine storm. We revisit this using RNA sequencing of nasopharyngeal and 40 autopsy samples from patients dying of SARS-CoV-2. Subsets of the 100 top-upregulated genes in nasal swabs are upregulated in the heart, lung, kidney, and liver, but not mediastinal lymph nodes. Twenty-two of these are "noncanonical" immune genes, which we link to components of the renin-angiotensin-activation-system that manifest as increased fibrin deposition, leaky vessels, thrombotic tendency, PANoptosis, and mitochondrial dysfunction. Immunohistochemistry of mediastinal lymph nodes reveals altered architecture, excess collagen deposition, and pathogenic fibroblast infiltration. Many of the above findings are paralleled in animal models of SARS-CoV-2 infection and human peripheral blood mononuclear and whole blood samples from individuals with early and later SARS-CoV-2 variants. We then redefine cytokine storm in lethal COVID-19 as driven by upstream immune gene and mitochondrial signaling producing downstream RAAS (renin-angiotensin-aldosterone system) overactivation and organ damage, including compromised mediastinal lymph node function.
Collapse
Affiliation(s)
- Michael J. Topper
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Joseph W. Guarnieri
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Jeffrey A. Haltom
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
| | - Henry Cope
- School of Medicine, University of Nottingham, DerbyDE22 3DT, United Kingdom
| | - Justin Frere
- Icahn School of Medicine, Mount Sinai, New York, NY10023
| | - Julia An
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | | | | | | | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY10065
| | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY10065
| | - Stephanie A. Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Nusrat J. Epsi
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Josh G. Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Mark P. Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
| | - Clifton Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD20814
| | | | | | | | | | | | | | | | | | - Katherine Beigel
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kevin A. Janssen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- The University of Pennsylvania, Philadelphia, PA19104
| | - Arnold Z. Olali
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Zimu Cen
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Joseph Dybas
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Monroe Dunaway Anderson Cancer Center, Houston, TX77030
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA02155
- University of Texas Medical Branch, Galveston, TX77555
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA02155
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT59840
| | - Maya Kelsey Johnson
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA02155
- Fogarty International Center, NIH, Bethesda, MD20892
| | - Kevin B. Clark
- COVID-19 International Research Team, Medford, MA02155
- Cures Within Reach, Chicago, IL60602
- Champions Service, Computational Sciences Support Network, Multi-Tier Assistance, Training, and Computational Help Track, NSF's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA02155
- Center for Translational Data Science, University of Chicago, Chicago, IL60615
- Clever Research Lab, Springfield, IL62704
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA02155
- Morehouse School of Medicine, Atlanta, GA30310
| | - Peter Grabham
- COVID-19 International Research Team, Medford, MA02155
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY19103
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA02155
- University of North Carolina, Chapel Hill, NC27599
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA02155
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil13083-862
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
- New York Genome Center, New York, NY10013
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA02155
- Center for Metabolic Biology, Bioinformatics and Computational Biology, and Genetics Development, and Cell Biology, Iowa State University, Ames, IA50011
- Center for Bioinformatics and Computational Biology Iowa State University, Ames, IA50011
- Center for Genetics Development, and Cell Biology Iowa State University, Ames, IA50011
| | - Deanne Taylor
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA02155
- Weill Cornell Medicine, New York, NY10065
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA02155
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Blue Marble Space Institute of Science, Seattle, WA98104
- McGowan Institute for Regenerative Medicine and Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA15219
| | - Douglas C. Wallace
- COVID-19 International Research Team, Medford, MA02155
- The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA19104
| | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA02155
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Van Andel Institute, Grand Rapids, MI49503
| |
Collapse
|
12
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024; 15:e0230824. [PMID: 39345136 PMCID: PMC11559048 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Guarnieri JW, Lie T, Albrecht YES, Hewin P, Jurado KA, Widjaja GA, Zhu Y, McManus MJ, Kilbaugh TJ, Keith K, Potluri P, Taylor D, Angelin A, Murdock DG, Wallace DC. Mitochondrial antioxidants abate SARS-COV-2 pathology in mice. Proc Natl Acad Sci U S A 2024; 121:e2321972121. [PMID: 39008677 PMCID: PMC11287122 DOI: 10.1073/pnas.2321972121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- University of Pennsylvania, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Peter Hewin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kellie A. Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Yi Zhu
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Meagan J. McManus
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Kelsey Keith
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Prasanth Potluri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Deanne Taylor
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Douglas C. Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
14
|
Rurek M. Mitochondria in COVID-19: from cellular and molecular perspective. Front Physiol 2024; 15:1406635. [PMID: 38974521 PMCID: PMC11224649 DOI: 10.3389/fphys.2024.1406635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The rapid development of the COVID-19 pandemic resulted in a closer analysis of cell functioning during β-coronavirus infection. This review will describe evidence for COVID-19 as a syndrome with a strong, albeit still underestimated, mitochondrial component. Due to the sensitivity of host mitochondria to coronavirus infection, SARS-CoV-2 affects mitochondrial signaling, modulates the immune response, modifies cellular energy metabolism, induces apoptosis and ageing, worsening COVID-19 symptoms which can sometimes be fatal. Various aberrations across human systems and tissues and their relationships with mitochondria were reported. In this review, particular attention is given to characterization of multiple alterations in gene expression pattern and mitochondrial metabolism in COVID-19; the complexity of interactions between SARS-CoV-2 and mitochondrial proteins is presented. The participation of mitogenome fragments in cell signaling and the occurrence of SARS-CoV-2 subgenomic RNA within membranous compartments, including mitochondria is widely discussed. As SARS-CoV-2 severely affects the quality system of mitochondria, the cellular background for aberrations in mitochondrial dynamics in COVID-19 is additionally characterized. Finally, perspectives on the mitigation of COVID-19 symptoms by affecting mitochondrial biogenesis by numerous compounds and therapeutic treatments are briefly outlined.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
15
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Hoenigsperger H, Sivarajan R, Sparrer KM. Differences and similarities between innate immune evasion strategies of human coronaviruses. Curr Opin Microbiol 2024; 79:102466. [PMID: 38555743 DOI: 10.1016/j.mib.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
So far, seven coronaviruses have emerged in humans. Four recurring endemic coronaviruses cause mild respiratory symptoms. Infections with epidemic Middle East respiratory syndrome-related coronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV)-1 are associated with high mortality rates. SARS-CoV-2 is the causative agent of the coronavirus disease 2019 pandemic. To establish an infection, coronaviruses evade restriction by human innate immune defenses, such as the interferon system, autophagy and the inflammasome. Here, we review similar and distinct innate immune manipulation strategies employed by the seven human coronaviruses. We further discuss the impact on pathogenesis, zoonotic emergence and adaptation. Understanding the nature of the interplay between endemic/epidemic/pandemic coronaviruses and host defenses may help to better assess the pandemic potential of emerging coronaviruses.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
17
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. RESEARCH SQUARE 2024:rs.3.rs-4292014. [PMID: 38798602 PMCID: PMC11118709 DOI: 10.21203/rs.3.rs-4292014/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
SARS-CoV-2 uses the double-membrane vesicles as replication organelles. However, how virion assembly occurs has not been fully understood. Here we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs have unusual electron-dense and dynamic inner structures, and their formation is driven by the accessory protein ORF3a via hijacking a specific subset of the trans-Golgi network (TGN) and early endosomal membranes. 3DB formation is conserved in related bat and pangolin coronaviruses yet lost during the evolution to SARS-CoV. 3DBs recruit the viral structural proteins spike (S) and membrane (M) and undergo dynamic fusion/fission to facilitate efficient virion assembly. A recombinant SARS-CoV-2 virus with an ORF3a mutant specifically defective in 3DB formation showed dramatically reduced infectivity for both extracellular and cell-associated virions. Our study uncovers the crucial role of 3DB in optimal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA 78227
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| |
Collapse
|
18
|
Lučiūnaitė A, Mašalaitė K, Plikusiene I, Maciulis V, Juciute S, Norkienė M, Žvirblienė A. Structural properties of immune complexes formed by viral antigens and specific antibodies shape the inflammatory response of macrophages. Cell Biosci 2024; 14:53. [PMID: 38664730 PMCID: PMC11046781 DOI: 10.1186/s13578-024-01237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Data on the course of viral infections revealed severe inflammation as a consequence of antiviral immune response. Despite extensive research, there are insufficient data on the role of innate immune cells in promoting inflammation mediated by immune complexes (IC) of viral antigens and their specific antibodies. Recently, we demonstrated that antigens of human polyomaviruses (PyVs) induce an inflammatory response in macrophages. Here, we investigated macrophage activation by IC. We used primary murine macrophages as a cell model, virus-like particles (VLPs) of PyV capsid protein as antigens, and a collection of murine monoclonal antibodies (mAbs) of IgG1, IgG2a, IgG2b subclasses. The inflammatory response was investigated by analysing inflammatory chemokines and activation of NLRP3 inflammasome. We observed a diverse pattern of chemokine secretion in macrophages treated with different IC compared to VLPs alone. To link IC properties with cell activation status, we characterised the IC by advanced optical and acoustic techniques. Ellipsometry provided precise real-time kinetics of mAb-antigen interactions, while quartz crystal microbalance measurements showed changes in conformation and viscoelastic properties during IC formation. These results revealed differences in mAb-antigen interaction and mAb binding parameters of the investigated IC. We found that IC-mediated cell activation depends more on IC characteristics, including mAb affinity, than on mAb affinity for the activating Fc receptor. IC formed by the highest affinity mAb showed a significant enhancement of inflammasome activation. This may explain the hyperinflammation related to viral infection and vaccination. Our findings demonstrate that IC promote the viral antigen-induced inflammatory response depending on antibody properties.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania.
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
- Pharmacy and Pharmacology Center, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vincentas Maciulis
- State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
19
|
Huang W, Chen X, Yin M, Li J, Luo M, Ai Y, Xie L, Li W, Liu Y, Xie X, Chen Y, Zhang X, He J. Protection effects of mice liver and lung injury induced by coronavirus infection of Qingfei Paidu decoction involve inhibition of the NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117512. [PMID: 38040130 DOI: 10.1016/j.jep.2023.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronavirus Disease 2019 (COVID-19) is a grave and pervasive global infectious malady brought about by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), posing a significant menace to human well-being. Qingfei Paidu decoction (QFPD) represents a pioneering formulation derived from four classical Chinese medicine prescriptions. Substantiated evidence attests to its efficacy in alleviating clinical manifestations, mitigating the incidence of severe and critical conditions, and reducing mortality rates among COVID-19 patients. AIM OF THE STUDY This study aims to investigate the protection effects of QFPD in mice afflicted with a coronavirus infection, with a particular focus on determining whether its mechanism involves the NLRP3 signaling pathway. MATERIALS AND METHODS The coronavirus mice model was established through intranasal infection of Kunming mice with Hepatic Mouse Virus A59 (MHV-A59). In the dose-effect experiment, normal saline, ribavirin (80 mg/kg), or QFPD (5, 10, 20 g/kg) were administered to the mice 2 h following MHV-A59 infection. In the time-effect experiment, normal saline or QFPD (20 g/kg) was administered to mice 2 h post MHV-A59 infection. Following the assessment of mouse body weights, food consumption, and water intake, intragastric administration was conducted once daily at consistent intervals over a span of 5 days. The impact of QFPD on pathological alterations in the livers and lungs of MHV-A59-infected mice was evaluated through H&E staining. The viral loads of MHV-A59 in both the liver and lung were determined using qPCR. The expression levels of genes and proteins related to the NLRP3 pathway in the liver and lung were assessed through qPCR, Western Blot analysis, and immunofluorescence. RESULTS The administration of QFPD was shown to ameliorate the reduced weight gain, decline in food consumption, and diminished water intake, all of which were repercussions of MHV-A59 infection in mice. QFPD treatment exhibited notable efficacy in safeguarding tissue integrity. The extent of hepatic and pulmonary injury, when coupled with QFPD treatment, demonstrated not only a reduction with higher treatment dosages but also a decline with prolonged treatment duration. In the dose-effect experiment, there was a notable, dose-dependent reduction in the viral loads, as well as the expression levels of IL-1β, NLRP3, ASC, Caspase 1, Caspase-1 p20, GSDMD, GSDMD-N, and NF-κB within the liver of the QFPD-treated groups. Additionally, in the time-effects experiments, the viral loads and the expression levels of genes and proteins linked to the NLRP3 pathway were consistently lower in the QFPD-treated groups compared with the model control groups, particularly during the periods when their expressions reached their zenith in the model group. Notably, IL-18 showed only a modest elevation relative to the blank control group following QFPD treatment. CONCLUSIONS To sum up, our current study demonstrated that QFPD treatment has the capacity to alleviate infection-related symptoms, mitigate tissue damage in infected organs, and suppress viral replication in coronavirus-infected mice. The protective attributes of QFPD in coronavirus-infected mice are plausibly associated with its modulation of the NLRP3 signaling pathway. We further infer that QFPD holds substantial promise in the context of coronavirus infection therapy.
Collapse
Affiliation(s)
- Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minyi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wanxi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yatian Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyuan Xie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan Chen
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinyu Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation. Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
21
|
Di Pietro C, Haberman AM, Lindenbach BD, Smith PC, Bruscia EM, Allore HG, Vander Wyk B, Tyagi A, Zeiss CJ. Prior Influenza Infection Mitigates SARS-CoV-2 Disease in Syrian Hamsters. Viruses 2024; 16:246. [PMID: 38400021 PMCID: PMC10891789 DOI: 10.3390/v16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Seasonal infection rates of individual viruses are influenced by synergistic or inhibitory interactions between coincident viruses. Endemic patterns of SARS-CoV-2 and influenza infection overlap seasonally in the Northern hemisphere and may be similarly influenced. We explored the immunopathologic basis of SARS-CoV-2 and influenza A (H1N1pdm09) interactions in Syrian hamsters. H1N1 given 48 h prior to SARS-CoV-2 profoundly mitigated weight loss and lung pathology compared to SARS-CoV-2 infection alone. This was accompanied by the normalization of granulocyte dynamics and accelerated antigen-presenting populations in bronchoalveolar lavage and blood. Using nasal transcriptomics, we identified a rapid upregulation of innate and antiviral pathways induced by H1N1 by the time of SARS-CoV-2 inoculation in 48 h dual-infected animals. The animals that were infected with both viruses also showed a notable and temporary downregulation of mitochondrial and viral replication pathways. Quantitative RT-PCR confirmed a decrease in the SARS-CoV-2 viral load and lower cytokine levels in the lungs of animals infected with both viruses throughout the course of the disease. Our data confirm that H1N1 infection induces rapid and transient gene expression that is associated with the mitigation of SARS-CoV-2 pulmonary disease. These protective responses are likely to begin in the upper respiratory tract shortly after infection. On a population level, interaction between these two viruses may influence their relative seasonal infection rates.
Collapse
Affiliation(s)
- Caterina Di Pietro
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06519, USA; (C.D.P.); (E.M.B.)
| | - Ann M. Haberman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA;
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06519, USA;
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA;
| | - Peter C. Smith
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06519, USA; (C.D.P.); (E.M.B.)
| | - Heather G. Allore
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (H.G.A.); (B.V.W.)
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06519, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (H.G.A.); (B.V.W.)
| | - Antariksh Tyagi
- Department of Genetics, Yale Center for Genome Analysis, New Haven, CT 06519, USA;
| | - Caroline J. Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06519, USA;
| |
Collapse
|
22
|
He Q, Hu D, Zheng F, Chen W, Hu K, Liu J, Yao C, Li H, Wei Y. Investigating the Nexus of NLRP3 Inflammasomes and COVID-19 Pathogenesis: Unraveling Molecular Triggers and Therapeutic Strategies. Viruses 2024; 16:213. [PMID: 38399989 PMCID: PMC10892947 DOI: 10.3390/v16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has been marked by severe cases demonstrating a "cytokine storm", an upsurge of pro-inflammatory cytokines in the bloodstream. NLRP3 inflammasomes, integral to the innate immune system, are speculated to be activated by SARS-CoV-2 within host cells. This review investigates the potential correlation between NLRP3 inflammasomes and COVID-19, exploring the cellular and molecular mechanisms through which SARS-CoV-2 triggers their activation. Furthermore, promising strategies targeting NLRP3 inflammasomes are proposed to mitigate the excessive inflammatory response provoked by SARS-CoV-2 infection. By synthesizing existing studies, this paper offers insights into NLRP3 as a therapeutic target, elucidating the interplay between COVID-19 and its pathophysiology. It serves as a valuable reference for future clinical approaches in addressing COVID-19 by targeting NLRP3, thus providing potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Qun He
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Da Hu
- Sinopharm Animal Health Corporation Ltd., Wuhan 430075, China;
| | - Fuqiang Zheng
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Wenxuan Chen
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Kanghong Hu
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Jinbiao Liu
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Chenguang Yao
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Hanluo Li
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| |
Collapse
|
23
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Granata S, La Russa D, Stallone G, Perri A, Zaza G. Inflammasome pathway in kidney transplantation. Front Med (Lausanne) 2023; 10:1303110. [PMID: 38020086 PMCID: PMC10663322 DOI: 10.3389/fmed.2023.1303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplantation is the best available renal replacement therapy for patients with end-stage kidney disease and is associated with better quality of life and patient survival compared with dialysis. However, despite the significant technical and pharmaceutical advances in this field, kidney transplant recipients are still characterized by reduced long-term graft survival. In fact, almost half of the patients lose their allograft after 15-20 years. Most of the conditions leading to graft loss are triggered by the activation of a large immune-inflammatory machinery. In this context, several inflammatory markers have been identified, and the deregulation of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex activated by either whole pathogens (including fungi, bacteria, and viruses) or host-derived molecules, seems to play a pivotal pathogenetic role. However, the biological mechanisms leading to inflammasome activation in patients developing post-transplant complications (including, ischemia-reperfusion injury, rejections, infections) are still largely unrecognized, and only a few research reports, reviewed in this manuscript, have addressed the association between abnormal activation of this pathway and the onset/development of major clinical effects. Finally, the regulation of the inflammasome machinery could represent in future a valuable therapeutic target in kidney transplantation.
Collapse
Affiliation(s)
- Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Græcia", Catanzaro, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
25
|
Mahalingam SS, Jayaraman S, Arunkumar A, Dudley HM, Anthony DD, Shive CL, Jacobson JM, Pandiyan P. Distinct SARS-CoV-2 specific NLRP3 and IL-1β responses in T cells of aging patients during acute COVID-19 infection. Front Immunol 2023; 14:1231087. [PMID: 37799713 PMCID: PMC10548880 DOI: 10.3389/fimmu.2023.1231087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19) that presents with varied clinical manifestations ranging from asymptomatic or mild infections and pneumonia to severe cases associated with cytokine storm, acute respiratory distress syndrome (ARDS), and even death. The underlying mechanisms contributing to these differences are unclear, although exacerbated inflammatory sequelae resulting from infection have been implicated. While advanced aging is a known risk factor, the precise immune parameters that determine the outcome of SARS-CoV-2 infection in elderly individuals are not understood. Here, we found aging-associated (age ≥61) intrinsic changes in T cell responses when compared to those from individuals aged ≤ 60, even among COVID-positive patients with mild symptoms. Specifically, when stimulated with SARS-CoV-2 peptides in vitro, peripheral blood mononuclear cell (PBMC) CD4+ and CD8+ T cells from individuals aged ≥61 showed a diminished capacity to produce IFN-γ and IL-1β. Although they did not have severe disease, aged individuals also showed a higher frequency of PD-1+ cells and significantly diminished IFN-γ/PD-1 ratios among T lymphocytes upon SARS-CoV-2 peptide stimulation. Impaired T cell IL-1β expression coincided with reduced NLRP3 levels in T lymphocytes. However, the expression of these molecules was not affected in the monocytes of individuals aged ≥61. Together, these data reveal SARS-CoV-2-specific CD4+ and CD8+ T-cell intrinsic cytokine alterations in the individuals older than 61 and may provide new insights into dysregulated COVID-directed immune responses in the elderly.
Collapse
Affiliation(s)
- Shanmuga Sundaram Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Adhvika Arunkumar
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Holly M. Dudley
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Donald D. Anthony
- Department of Rheumatology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Carey L. Shive
- Department of Rheumatology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey M. Jacobson
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Rheumatology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Center for AIDS Research, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
26
|
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Zhang S, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Bram Y, Kidane Y, Priebe W, Emmett MR, Meller R, Demharter S, Stentoft-Hansen V, Salvatore M, Galeano D, Enguita FJ, Grabham P, Trovao NS, Singh U, Haltom J, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, Wallace DC. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med 2023; 15:eabq1533. [PMID: 37556555 PMCID: PMC11624572 DOI: 10.1126/scitranslmed.abq1533] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph M. Dybas
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Hossein Fazelinia
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Man S. Kim
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Justin Frere
- Icahn School of Medicine at Mount Sinai, New York, NY 10023, USA
| | - Yuanchao Zhang
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Yentli Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Deborah G. Murdock
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Scott L. Weiss
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA 02155, USA
- Rocky Mountain Laboratory, National Institute of Allergy and Infectious Disease, NIH, Hamilton, MT 59840, USA
| | - Marie T. Lott
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Henry Cope
- University of Nottingham, Nottingham, UK
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Chicago, Chicago, IL 60615, USA
- Clever Research Lab, Springfield, IL 62704, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team, Medford, MA 02155, USA
- Logyx, LLC, Mountain View, CA 94043, USA
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Yared Kidane
- COVID-19 International Research Team, Medford, MA 02155, USA
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA 02155, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | - Diego Galeano
- COVID-19 International Research Team, Medford, MA 02155, USA
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Francisco J. Enguita
- COVID-19 International Research Team, Medford, MA 02155, USA
- Faculdade de Medicina, Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisboa, Portugal
| | - Peter Grabham
- College of Physicians and Surgeons, Columbia University, New York, NY 19103, USA
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Urminder Singh
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Haltom
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Mark T. Heise
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Emily A. Madden
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Wes A. Sanders
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA 02155, USA
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Campinas, Campinas, SP, Brazil
| | - Deanne Taylor
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
- New York Genome Center, New York, NY 10013, USA
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|