1
|
Riess A, Roggia C, Selting AS, Lysenkov V, Ossowski S, Casadei N, Riess O, Singh Y. sc-MULTI-omics approach in nano-rare diseases: understanding the pathophysiological mechanism of Mulvihill-Smith Syndrome. Funct Integr Genomics 2025; 25:101. [PMID: 40343591 PMCID: PMC12064584 DOI: 10.1007/s10142-025-01608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
Mulvihill-Smith Syndrome (MSS) is a clinically complex and genetically unsolved nano-rare disorder with only 12 patients reported in the literature. Most patients (91%) have immunological impairments, succumb to infection, and might develop cancer later in life. Its pathogenesis remains elusive and therapeutic options are limited. We used single-cell MULTI-omics (sc-MULTI-omics), combining transcriptomics (gene expression, TCR, and BCR repertoire) and proteogenomic (Cellular Indexing of Transcriptomes and Epitopes by Sequencing; CITE-seq), to decipher the pathophysiology of nano-rare disease patient. We report a new patient who is a 16-year-old girl. She had an increased leukocyte counts and typical manifestations of MSS such as short stature, older appearance, multiple pigmented nevi, microcephaly, monolateral keratoconus, Marcus-Gunn syndrome, hearing loss, vitamin D deficiency, mild hypercortisolism, and diabetes mellitus with very high insulin resistance (T3DM). sc-MULTI-omics CITE-seq showed that the MSS patient had increased central memory CD4+ T cells as well as effector memory CD8+ T cells, whilst reduced naïve T cells (both CD4+ and CD8+ T cells). Furthermore, we identified genes and pathways associated with the progeria-like phenotype, inflammation, and cancer progression, which may contribute to the clinical signs of MSS. sc-MUTLI-omics CITE-seq analyses improve our understanding of complex human disease pathophysiology and provides an alternative approach in personalized medicine in nano-rare disease.
Collapse
Affiliation(s)
- Angelika Riess
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany
| | - Cristiana Roggia
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany
| | - Antje Schulze Selting
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany
- NGS Competence Centre Tübingen, University Hospital Tübingen, Tübingen University, Tübingen, Germany
| | - Vladislav Lysenkov
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany
- NGS Competence Centre Tübingen, University Hospital Tübingen, Tübingen University, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany
- NGS Competence Centre Tübingen, University Hospital Tübingen, Tübingen University, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany.
- NGS Competence Centre Tübingen, University Hospital Tübingen, Tübingen University, Tübingen, Germany.
| | - Yogesh Singh
- Institute of Medical Genetics & Applied Genomics, University Hospital Tübingen, Tübingen University, Tübingen, Germany.
- NGS Competence Centre Tübingen, University Hospital Tübingen, Tübingen University, Tübingen, Germany.
- Research Institute of Women's Hospital, University Hospital Tübingen, Tübingen University, Tübingen, Germany.
| |
Collapse
|
2
|
Wang S, Xiao R, Chen Y, Ye Y, He T, Yang Y, Chen X, Chou CK. Anti-tumor necrosis factor therapy in the treatment of systemic autoinflammatory diseases: the responses of innate immune cells. J Leukoc Biol 2025; 117:qiaf026. [PMID: 40084825 DOI: 10.1093/jleuko/qiaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Systemic autoinflammatory diseases are rare conditions resulting from dysregulation of the innate immune system, culminating in repetitive bouts of systemic inflammation without the presence of external or self-antigens. Most systemic autoinflammatory diseases are associated with mutations in genes affecting the innate immune response. Tumor necrosis factor is a central player in the pathogenesis of numerous chronic inflammatory disorders, and anti-tumor necrosis factor therapy is widely used in the clinical management of systemic autoinflammatory diseases. Tumor necrosis factor inhibitors block the interaction of tumor necrosis factor with its 2 receptors, tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. These inhibitors primarily target soluble tumor necrosis factor, which mainly binds to tumor necrosis factor receptor 1, exerting anti-inflammatory effects. Interestingly, tumor necrosis factor inhibitors also affect transmembrane tumor necrosis factor, which engages tumor necrosis factor receptor 2 to initiate reverse signaling. This reverse signaling can activate innate immune cells, prevent apoptosis, or paradoxically inhibit the production of pro-inflammatory cytokines. Tumor necrosis factor inhibitors also promote the release of soluble tumor necrosis factor receptor 2, which neutralizes circulating tumor necrosis factor. Some agents targeting tumor necrosis factor receptor 2 can even act as agonists, triggering reverse signaling by binding to transmembrane tumor necrosis factor. While effective, prolonged use of tumor necrosis factor inhibitors may cause significant side effects due to the widespread expression and pleiotropic functions of tumor necrosis factor receptors. A more thorough understanding of the mechanisms underlying the action of tumor necrosis factor inhibitors is required to develop a more effective and safer treatment for systemic autoinflammatory diseases. This article reviews current studies on the role of the innate immune system in systemic autoinflammatory disease pathogenesis, the impact of anti-tumor necrosis factor therapy on innate immune cells, and perspectives on developing improved agents targeting tumor necrosis factor or its receptors.
Collapse
Affiliation(s)
- Shuyi Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Rufei Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Yibo Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Tianzhen He
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, P. R. China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, P. R. China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, P. R. China
| |
Collapse
|
3
|
Smail C, Montgomery SB. RNA Sequencing in Disease Diagnosis. Annu Rev Genomics Hum Genet 2024; 25:353-367. [PMID: 38360541 DOI: 10.1146/annurev-genom-021623-121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA sequencing (RNA-seq) enables the accurate measurement of multiple transcriptomic phenotypes for modeling the impacts of disease variants. Advances in technologies, experimental protocols, and analysis strategies are rapidly expanding the application of RNA-seq to identify disease biomarkers, tissue- and cell-type-specific impacts, and the spatial localization of disease-associated mechanisms. Ongoing international efforts to construct biobank-scale transcriptomic repositories with matched genomic data across diverse population groups are further increasing the utility of RNA-seq approaches by providing large-scale normative reference resources. The availability of these resources, combined with improved computational analysis pipelines, has enabled the detection of aberrant transcriptomic phenotypes underlying rare diseases. Further expansion of these resources, across both somatic and developmental tissues, is expected to soon provide unprecedented insights to resolve disease origin, mechanism of action, and causal gene contributions, suggesting the continued high utility of RNA-seq in disease diagnosis.
Collapse
Affiliation(s)
- Craig Smail
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, Missouri, USA;
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Department of Genetics, and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
4
|
Zou C, Li W, Zhang Y, Feng N, Chen S, Yan L, He Q, Wang K, Li W, Li Y, Wang Y, Xu B, Zhang D. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. SCIENCE ADVANCES 2024; 10:eadm7098. [PMID: 38569039 PMCID: PMC10990282 DOI: 10.1126/sciadv.adm7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Cheng Zou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Wenchao Li
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuanzhen Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ninghan Feng
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Saisai Chen
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lianlian Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
| | - Qinju He
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wenjun Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yingying Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yang Wang
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform (Ministry of Education), Basic Medicine Research and Innovation Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dingxiao Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|