1
|
Ren X, Liu G, Zhou J. Nuclear-activating miRNAs: unveiling the intricacies of subcellular miRNA function and regulation in cancer and immunity disease. Cancer Cell Int 2025; 25:147. [PMID: 40234876 PMCID: PMC11998458 DOI: 10.1186/s12935-025-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that traditionally recognized as negative regulators of gene expression through post-transcriptional regulation in the cytoplasm. However, recent discoveries have unveiled some novel miRNA functions in the cell nucleus, where a subset of miRNAs, termed nuclear-activating miRNAs (NamiRNAs), play pivotal roles in gene activation and transcriptional regulation for cancer and immunity disease. The discovery of NamiRNAs demonstrated a complementary regulatory function of miRNA, showing their differential activities in the nucleus and cytoplasm. This review aims to explore the biogenesis, mechanisms, and regulatory functions of NamiRNAs, deciphering their involvement in NamiRNA-gene network for gene expression modulation, and emerging significance as drug targets against cancer.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Nanjing Street 155, Shenyang, 110001, China
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Yantai, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Nanjing Street 155, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Nanjing Street 155, Shenyang, 110001, China.
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China.
| |
Collapse
|
2
|
Ahmed S, Adnan H, Khawaja MA, Butler AE. Novel Micro-Ribonucleic Acid Biomarkers for Early Detection of Type 2 Diabetes Mellitus and Associated Complications-A Literature Review. Int J Mol Sci 2025; 26:753. [PMID: 39859467 PMCID: PMC11765584 DOI: 10.3390/ijms26020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread chronic diseases globally, with its prevalence expected to rise significantly in the years ahead. Previous studies on risk stratification for T2DM identify certain biomarkers, including glycated hemoglobin (HbA1c), oral glucose tolerance testing (OGTT), fructosamine, and glycated albumin, as key indicators for predicting the onset and progression of T2DM. However, these traditional markers have been shown to lack sensitivity and specificity and their results are difficult to analyze due to non-standardized interpretation criteria, posing significant challenges to an accurate and definitive diagnosis. The strict measures of these traditional markers may not catch gradual increases in blood sugar levels during the early stages of diabetes evolution, as these might still fall within acceptable glycemic parameters. Recent advancements in research have suggested novel micro ribonucleic acid (miRNA) as circulatory molecules that can facilitate the early detection of prediabetic conditions in high-risk groups and potentially enable prevention of the progression to T2DM. This capability makes them a very powerful tool for potentially improving population health, enhancing outcomes for many patients, and reducing the overall burden of T2DM. These promising biomarkers are small, noncoding RNA involved in the regulation of many cellular functions that have a hand in the metabolic activities of cells, making them a very useful and relevant biomarker to explore for the diagnosis and risk stratification of T2DM. This review analyzes the current literature, outlining the occurrence of miRNAs in prediabetic and diabetic individuals and their implications in predicting dysglycemic disorders.
Collapse
Affiliation(s)
- Sara Ahmed
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Haroon Adnan
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Maryam A. Khawaja
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
3
|
Chen W, Wu C, Li Y, Wang T, Huang M, Wang M, Long L, Chen Y, Feng S, Liu X, Tang S. Mir-483-5p-mediated activating of IGF2/H19 enhancer up-regulates IGF2/H19 expression via chromatin loops to promote the malignant progression of hepatocellular carcinoma. Mol Cancer 2025; 24:10. [PMID: 39799319 PMCID: PMC11724483 DOI: 10.1186/s12943-024-02204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND The insulin-like growth factor 2 (IGF2) and H19 are overexpressed in hepatocellular carcinoma (HCC). IGF2-derived miR-483-5p is implicated in the development of cancers. Here, we investigated the involvement of miR-483-5p in IGF2 and H19 overexpression regulation and its role in HCC. METHODS Firstly, the effect of miR-483-5p on the expression of IGF2 and H19, and the binding of miR-483-5p to IGF2/H19 enhancer were evaluated in HCC cells. Next, miR-483-5p-mediated IGF2/H19 enhancer activation and its mechanism were investigated in HCC cells. Then, the mechanism by which active IGF2/H19 enhancer mediated by miR-483-5p activate IGF2/H19 promoters was studied in HCC cells. Finally, the effect of MED1 on the expression of IGF2/H19 as well as the malignant phenotype of HCC cells in vitro and in vivo mediated by miR-483-5p was evaluated. RESULTS Mir-483-5p up-regulated IGF2 P2 mRNA-P4 mRNA and H19 expression by binding to IGF2/H19 enhancer resulting in IGF2/H19 enhancer activation in HCC cells. Mechanistically, miR-483-5p increased recruitment of Ago1 and Ago2 at IGF2/H19 enhancer and then activated transcription of IGF2/H19 eRNA by RNA polymerase II and p300, which further induced chromatin loops formation between IGF2/H19 enhancer and IGF2/H19 promoters to activate IGF2/H19 promoters via IGF2/H19 eRNA-MED1-IGF2/H19 promoters complex in HCC cells. In this process, MED1 promoted chromatin loops formation as well as the malignant phenotype of HCC cells in vitro and in vivo mediated by miR-483-5p. CONCLUSIONS miR-483-5p-mediated activating of IGF2/H19 enhancer up-regulates IGF2/H19 expression via DNA loops, thereby promoting the malignant progression of HCC.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
- Department of Gastroenterology, The First People's Hospital of Zunyi, (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, P. R. China
| | - Chutian Wu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuting Li
- Department of Gastroenterology, Weifang People's Hospital, Shandong Second Medical University, Shandong, China
| | - Tonghua Wang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, BaiSe, P. R. China
| | - Miaoling Huang
- Department of General Practice, The First Affiliated Hospital, Jinan University, Guangzhou, P. R. China
| | - Min Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Linjing Long
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanfang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Shufen Feng
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Xuyou Liu
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, P. R. China.
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China.
| |
Collapse
|
4
|
Sogorb-Gonzalez M, Landles C, Caron NS, Stam A, Osborne G, Hayden MR, Howland D, van Deventer S, Bates GP, Vallès A, Evers M. Exon 1-targeting miRNA reduces the pathogenic exon 1 HTT protein in Huntington's disease models. Brain 2024; 147:4043-4055. [PMID: 39155061 PMCID: PMC11629698 DOI: 10.1093/brain/awae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) that results in toxic gain of function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex, and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and might contribute to HD pathology. This finding suggests that reducing the expression of HTT1a might achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT might not completely prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes and have been the rationale for phase I/II clinical studies now ongoing in the USA and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at 2 months postinjection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in mice at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit in comparison to other HTT-targeting modalities.
Collapse
Affiliation(s)
- Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Georgina Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David Howland
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Sander van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| |
Collapse
|
5
|
Bellina A, Malfatti MC, Salgado G, Fleming AM, Antoniali G, Othman Z, Gualandi N, La Manna S, Marasco D, Dassi E, Burrows CJ, Tell G. Apurinic/Apyrimidinic Endodeoxyribonuclease 1 modulates RNA G-quadruplex folding of miR-92b and controls its expression in cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2317861121. [PMID: 39495925 PMCID: PMC11572961 DOI: 10.1073/pnas.2317861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures. Here, we show that several miRNA precursors, dysregulated upon APE1 depletion, contain an rG4 motif and that their corresponding target genes are up-regulated after APE1 depletion. We also demonstrate, both by in vitro assays and by using different cancer cell lines, that APE1 can modulate the folding of an rG4 structure contained in pre-miR-92b, with a mechanism strictly dependent on lysine residues present in its N-terminal disordered region. Furthermore, APE1 cellular depletion alters the maturation process of miR-92b, mainly affecting the shuttling between the nucleus and cytosol. Bioinformatic analysis of APE1-regulated rG4-containing miRNAs supports the relevance of our findings in cancer biology. Specifically, these miRNAs exhibit high prognostic significance in lung, cervical, and liver tumors, as suggested by their involvement in several cancer-related pathways.
Collapse
Affiliation(s)
- Alessia Bellina
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato—Organizzazione Non Lucrativa di Utilità Sociale, Basovizza34149, Italy
| | - Gilmar Salgado
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Zahraa Othman
- Department of Life Sciences and Technology for Health, ARNA laboratory, INSERM U1212, CNRS, UMR 5320, University of Bordeaux, BordeauxF-33076, France
| | - Nicolò Gualandi
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| | - Sara La Manna
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Daniela Marasco
- STARS lab (Structure Activity Relationship Synthesis and Spectroscopy), Department of Pharmacy, University of Naples “Federico II”, Naples80131, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento38123, Italy
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, UT84112-0850
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, Udine33100, Italy
| |
Collapse
|
6
|
Chun JH, Kimura K, Rajput M, Hsu MH, Liang YC, Shanbhag AR, Chiang PJ, Jackson TLB, Huang RCC. Evidence to Support the Collaboration of SP1, MYC, and HIF1A and Their Association with microRNAs. Curr Issues Mol Biol 2024; 46:12481-12496. [PMID: 39590335 PMCID: PMC11592871 DOI: 10.3390/cimb46110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study provides evidence to support the concept proposed by Kimura et al. in 2023 that the inhibitors of SP1, MYC, and HIF1A should induce strong anticancer activity by reducing the expression of stem cell-related proteins. In LN229 and U87MG glioblastoma cells, either tetra-methyl-O-nordihydroguaiaretic acid (M4N) or tetra-acetyl-O-nordihydroguaiaretic acid (A4N) suppressed SP1 and only a few stem cell-related proteins and induced only a small amount of cell death; in contrast, the combination treatment of M4N with A4N greatly suppressed the expression of SP1, MYC, and HIF1A, as well as all of the stem cell-related proteins examined, and greatly induced cell death. The bioinformatic analysis showed that the proteins associated with SP1, MYC, and HIF1A were specifically involved in the regulation of transcription and that various microRNAs (miRNAs) that had been shown to induce either anti- or procancer activity were associated with SP1, MYC, and HIF1A, which suggested that the inhibition of SP1, MYC, and HIF1A could modulate the transcription of both coding and noncoding RNAs and affect cancers. These data overall supported our concept.
Collapse
Affiliation(s)
- Jong Ho Chun
- Department of Biology, Johns Hopkins University, 3400 N. Charles St-Levi Hall 250, Baltimore, MD 21218, USA (M.R.); (A.R.S.)
| | - Kotohiko Kimura
- Department of Biology, Johns Hopkins University, 3400 N. Charles St-Levi Hall 250, Baltimore, MD 21218, USA (M.R.); (A.R.S.)
| | - Monika Rajput
- Department of Biology, Johns Hopkins University, 3400 N. Charles St-Levi Hall 250, Baltimore, MD 21218, USA (M.R.); (A.R.S.)
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Akanksha Ramadas Shanbhag
- Department of Biology, Johns Hopkins University, 3400 N. Charles St-Levi Hall 250, Baltimore, MD 21218, USA (M.R.); (A.R.S.)
- Advanced Academic Programs, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Ju Chiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Tiffany L. B. Jackson
- Department of Biology, Johns Hopkins University, 3400 N. Charles St-Levi Hall 250, Baltimore, MD 21218, USA (M.R.); (A.R.S.)
| | - Ru Chih C. Huang
- Department of Biology, Johns Hopkins University, 3400 N. Charles St-Levi Hall 250, Baltimore, MD 21218, USA (M.R.); (A.R.S.)
- Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Noches V, Campos-Melo D, Droppelmann CA, Strong MJ. Epigenetics in the formation of pathological aggregates in amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1417961. [PMID: 39290830 PMCID: PMC11405384 DOI: 10.3389/fnmol.2024.1417961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The progressive degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) is accompanied by the formation of a broad array of cytoplasmic and nuclear neuronal inclusions (protein aggregates) largely containing RNA-binding proteins such as TAR DNA-binding protein 43 (TDP-43) or fused in sarcoma/translocated in liposarcoma (FUS/TLS). This process is driven by a liquid-to-solid phase separation generally from proteins in membrane-less organelles giving rise to pathological biomolecular condensates. The formation of these protein aggregates suggests a fundamental alteration in the mRNA expression or the levels of the proteins involved. Considering the role of the epigenome in gene expression, alterations in DNA methylation, histone modifications, chromatin remodeling, non-coding RNAs, and RNA modifications become highly relevant to understanding how this pathological process takes effect. In this review, we explore the evidence that links epigenetic mechanisms with the formation of protein aggregates in ALS. We propose that a greater understanding of the role of the epigenome and how this inter-relates with the formation of pathological LLPS in ALS will provide an attractive therapeutic target.
Collapse
Affiliation(s)
- Veronica Noches
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
Zhang A, Pi W, Wang Y, Li Y, Wang J, Liu S, Cui X, Liu H, Yao D, Zhao R. Update on functional analysis of long non-coding RNAs in common crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1389154. [PMID: 38872885 PMCID: PMC11169716 DOI: 10.3389/fpls.2024.1389154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
With the rapid advances in next-generation sequencing technology, numerous non-protein-coding transcripts have been identified, including long noncoding RNAs (lncRNAs), which are functional RNAs comprising more than 200 nucleotides. Although lncRNA-mediated regulatory processes have been extensively investigated in animals, there has been considerably less research on plant lncRNAs. Nevertheless, multiple studies on major crops showed lncRNAs are involved in crucial processes, including growth and development, reproduction, and stress responses. This review summarizes the progress in the research on lncRNA roles in several major crops, presents key strategies for exploring lncRNAs in crops, and discusses current challenges and future prospects. The insights provided in this review will enhance our comprehension of lncRNA functions in crops, with potential implications for improving crop genetics and breeding.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yashuo Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuxin Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuying Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiyan Cui
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Rengui Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Nan L, Kaisi F, Mengzhen Z, Yang Y, Jiaming Y, Huirong Y, Xinwei H, Chen W, Liucheng Y, Kai W. miR-375-3p targets YWHAB to attenuate intestine injury in neonatal necrotizing enterocolitis. Pediatr Surg Int 2024; 40:63. [PMID: 38431920 DOI: 10.1007/s00383-024-05653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) is a significant contributor to neonatal mortality. This study aimed to investigate the role of high levels of miR-375-3p in breast milk in the development of NEC and elucidate its mechanism. METHODS Differential expression of miR-375-3p in the intestines of breast-fed and formula-fed mice was confirmed using real-time polymerase chain reaction (RT-PCR). NEC mice models were established, and intestinal injury was assessed using HE staining. RT-PCR and Western blot were conducted to examine the expression of miR-375-3p, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein β (YWHAB), as well as the inflammatory in IEC-6 cells, and intestinal tissues obtained from NEC mice and patients. Flow cytometry and cell counting kit-8 (CCK-8) were employed to elucidate the impact of miR-375-3p and YWHAB on cell apoptosis and proliferation. RESULTS Breastfeeding increases miR-375-3p expression in the intestines. The expression of miR-375-3p in NEC intestinal tissues exhibited a significant decrease compared to the healthy group. Additionally, the expression of interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) was higher in the NEC group compared to the control group. Down-regulation of miR-375-3p inhibited IEC-6 cell proliferation, increased apoptosis, and elevated secretion of inflammatory factors. Bioinformatics revealed that YWHAB may be a target of miR-375-3p. RT-PCR and Western blot indicated a down-regulation of YWHAB expression in intestines of NEC patients and mice. Furthermore, YWHAB was found to be positively connected with miR-375-3p. Knockdown miR-375-3p down-regulated YWHAB expression in cells. Inhibition of YWHAB exhibited similar effects to miR-375-3p in IEC-6 cells. YWHAB plasmid partially reverse cellular functional impairment induced by miR-375-3p knockdown. CONCLUSIONS Breastfeeding elevated miR-375-3p expression in intestines in neonatal mice. MiR-375-3p leads to a decrease in apoptosis of intestinal epithelial cells, an increase in cell proliferation, and a concomitant reduction in the expression of inflammatory factors partly through targeting YWHAB.
Collapse
Affiliation(s)
- Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Kaisi
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhang Mengzhen
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Jiaming
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Hou Xinwei
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wang Chen
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Liucheng
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Zhang Q, Wang C, Wu Y, Liu J, Wang T, Wang B. BAP31-Mediated miR-206/133b Cluster Promotes Transendothelial Migration and Metastasis of Colorectal Cancer. Int J Mol Sci 2023; 24:16740. [PMID: 38069061 PMCID: PMC10706076 DOI: 10.3390/ijms242316740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dysregulated B cell receptor-associated protein 31 (BAP31) plays a crucial role in tumor progression. This study aimed to investigate the functions and molecular mechanism of BAP31 on the miR-206/133b cluster in colorectal cancer (CRC). qPCR was conducted to detect miRNA and mRNA levels in tissues and cells. Western blot assays were used to assess the levels of biomarkers and targets, as well as the levels of BAP31 and HOXD10. Wound healing, coculture and transwell assays were conducted to assess the transendothelial migration abilities of CRC cells. A luciferase assay was employed to assess miRNA binding effects on targets, as well as the initiating transcription effect of genomic fragments. Tumor growth and lung metastatic models were established through an in vivo animal study. BAP31 overexpression in CRC cells led to a reduction in the expression of the miR-206/133b cluster. The expression of the miR-206/133b cluster was correlated with the transendothelial migration capability of CRC cells. The miR-206/133b cluster was found to directly regulate cell division cycle 42 (CDC42) and actin-related protein 2/3 complex subunit 5 (ARPC5) in the tight junction pathway (hsa04530). Moreover, a potential transcription regulator of the miR-206/133b cluster was also found to be Homeobox D10 (HOXD10). We further elucidated the molecular mechanisms and functional mechanisms of BAP31's regulatory role in the expression levels of the miR-206/133b cluster by inhibiting HOXD10 translocation from the cytoplasm to the nucleus. In conclusion, this study provides valuable insights into how BAP31 regulates the transcription of the miR-206/133b cluster and how BAP31-related lung metastases arise in CRC.
Collapse
Affiliation(s)
| | | | | | | | - Tianyi Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Q.Z.); (C.W.); (Y.W.); (J.L.)
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (Q.Z.); (C.W.); (Y.W.); (J.L.)
| |
Collapse
|
11
|
Golding MC. Teratogenesis and the epigenetic programming of congenital defects: Why paternal exposures matter. Birth Defects Res 2023; 115:1825-1834. [PMID: 37424262 PMCID: PMC10774456 DOI: 10.1002/bdr2.2215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Until recently, clinicians and researchers did not realize paternal exposures could impact child developmental outcomes. Indeed, although there is growing recognition that sperm carry a large amount of non-genomic information and that paternal stressors influence the health of the next generation, toxicologists are only now beginning to explore the role paternal exposures have in dysgenesis and the incidence of congenital malformations. In this commentary, I will briefly summarize the few studies describing congenital malformations resulting from preconception paternal stressors, argue for the theoretical expansion of teratogenic perspectives into the male preconception period, and discuss some of the challenges in this newly emerging branch of toxicology. I argue that we must consider gametes the same as any other malleable precursor cell type and recognize that environmentally-induced epigenetic changes acquired during the formation of the sperm and oocyte hold equal teratogenic potential as exposures during early development. Here, I propose the term epiteratogen to reference agents acting outside of pregnancy that, through epigenetic mechanisms, induce congenital malformations. Understanding the interactions between the environment, the essential epigenetic processes intrinsic to spermatogenesis, and their cumulative influences on embryo patterning is essential to addressing a significant blind spot in the field of developmental toxicology.
Collapse
Affiliation(s)
- Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
12
|
Ponomarenko EA, Krasnov GS, Kiseleva OI, Kryukova PA, Arzumanian VA, Dolgalev GV, Ilgisonis EV, Lisitsa AV, Poverennaya EV. Workability of mRNA Sequencing for Predicting Protein Abundance. Genes (Basel) 2023; 14:2065. [PMID: 38003008 PMCID: PMC10671741 DOI: 10.3390/genes14112065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.
Collapse
Affiliation(s)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Herbert A. Flipons and small RNAs accentuate the asymmetries of pervasive transcription by the reset and sequence-specific microcoding of promoter conformation. J Biol Chem 2023; 299:105140. [PMID: 37544644 PMCID: PMC10474125 DOI: 10.1016/j.jbc.2023.105140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
The role of alternate DNA conformations such as Z-DNA in the regulation of transcription is currently underappreciated. These structures are encoded by sequences called flipons, many of which are enriched in promoter and enhancer regions. Through a change in their conformation, flipons provide a tunable mechanism to mechanically reset promoters for the next round of transcription. They act as actuators that capture and release energy to ensure that the turnover of the proteins at promoters is optimized to cell state. Likewise, the single-stranded DNA formed as flipons cycle facilitates the docking of RNAs that are able to microcode promoter conformations and canalize the pervasive transcription commonly observed in metazoan genomes. The strand-specific nature of the interaction between RNA and DNA likely accounts for the known asymmetry of epigenetic marks present on the histone tetramers that pair to form nucleosomes. The role of these supercoil-dependent processes in promoter choice and transcriptional interference is reviewed. The evolutionary implications are examined: the resilience and canalization of flipon-dependent gene regulation is contrasted with the rapid adaptation enabled by the spread of flipon repeats throughout the genome. Overall, the current findings underscore the important role of flipons in modulating the readout of genetic information and how little we know about their biology.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery Division, InsideOutBio, Charlestown, Massachusetts, USA.
| |
Collapse
|