1
|
Yang J, Zhao Z, Ma T, Bai J. Aptamer Paper-Based Fluorescent Sensor for Determination of SARS-CoV-2 Spike Protein. SENSORS (BASEL, SWITZERLAND) 2025; 25:1637. [PMID: 40292706 PMCID: PMC11945200 DOI: 10.3390/s25061637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/30/2025]
Abstract
Point-of-care (POC) antigen detection plays a crucial role in curbing the spread of viruses. Paper-based fluorescence aptasensors are expected to offer a low-cost tool to meet the needs of decentralized POC diagnosis. Herein, we report on a fluorescent paper-based sensing system for detecting the SARS-CoV-2 spike protein. The sensing system was constructed by loading multi-layer Nb2C MXene nano-quenchers and carbon-dot-labeled aptamer (G-CDs@Apt) probes onto a mixed cellulose ester (MCE) paper substrate. On the Nb2C MXene/G-CDs@Apt sensing paper, abundant G-CDs@Apt probes were attached to the multilayer MXene nano-quenchers and kept in a fluorescence-off state, while recognition of the target detached the G-CDs@Apt probes formed the nano--quenchers, resulting in fluorescence recovery of the sensing paper. The developed paper-based sensor performed well in the one-step detection of the SARS-CoV-2 S1 protein with a detection limit of 0.067 ng/mL (0.335 pg/test). The assay exhibited good selectivity and anti-interference in the detection of the SARS-CoV-2 S1 protein in artificial saliva. Moreover, the paper-based aptasensor was successfully used to detect the SARS-CoV-2 S1 protein in actual environmental samples with recoveries of 90.87-100.55% and relative standard deviations of 1.52-3.41%. The proposed technology provides a cost-effective alternative to traditional antibody test strips for a wide range of POC diagnostic applications.
Collapse
Affiliation(s)
| | | | | | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Y.); (Z.Z.); (T.M.)
| |
Collapse
|
2
|
Zhu J, Guo G, Liu J, Li X, Yang X, Liu M, Fu C, Zeng J, Li J. One-pot synthesized Au@Pt nanostars-based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 nucleocapsid antibody. Anal Chim Acta 2024; 1292:342241. [PMID: 38309851 DOI: 10.1016/j.aca.2024.342241] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
In addition to confirming virus infection, quantitative identification of the antibodies to severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) also evaluates persons immunity to guide personal protection. However, portable assays for fast and accurate quantification of SARS-CoV-2 antibodies remain challenging. In this work, we synthesized Au@Pt star-like nanoparticles (NPs) quickly and easily by a one-pot wet-chemical approach, allowing the stellate Au core to be partially decorated by Pt nanoshells. The nanoparticles were used as probe in a lateral flow immunoassay (LFIA) that operated in both colorimetric and photothermal dual modes, which could detect the antibodies to the SARS-CoV-2 nucleocapsid (N) protein with high sensitivity. Due to the sharp tips on the external region of nanostars and surface plasmon coupling effect between the Au core and Pt shell, the NIR absorption capacity and photothermal performance of these NPs were exceptional. Under optimal conditions, the colorimetric mode's detection limit for SARS-CoV-2 N protein antibody was 1 ng mL-1, which is significantly lower by 2-order of magnitude compared to commercially available colloidal gold strips. And the detection limit for the photothermal mode was as low as 24.91 pg mL-1, which was approximately 40-fold more sensitive than colorimetric detection. Moreover, the method demonstrated favorable specificity, reproducibility and stability. Finally, the approach was employed for the successful identification of actual serum samples. Therefore, the dual-mode LFIA can be applied for screening and tracking the early immunological reaction to SARS-CoV-2, and it has great promise for clinical application.
Collapse
Affiliation(s)
- Jinyue Zhu
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jianting Liu
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xianning Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Min Liu
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chunhui Fu
- Qingdao Henderson Biological Technology Co., Ltd, Qingdao, 266109, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| | - Jingwen Li
- College of Chemistry and Chemical Engineering and State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
3
|
Hou J, Cao Y, Deng Q, Zhang Q, Deng X, Chen Z, Zhong Z. A fluorescence-based immunochromatographic assay using quantum dot-encapsulated nanoparticles for the rapid and sensitive detection of fetuin-B. Anal Chim Acta 2024; 1288:342143. [PMID: 38220278 DOI: 10.1016/j.aca.2023.342143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Earlier detection of CAD improves treatment outcomes and secondary prevention. The circulating fetuin-B protein is considered to be a promising biomarker for the early detection of CAD. However, a facile and reliable clinical test for fetuin-B is still lacking. Herein, we describe a reliable fluorescent biosensor for detecting fetuin-B in plasma that combines quantum dots-doped polystyrene nanoparticles with an immunochromatographic assay strip (QNPs-ICAS). The QNPs served as detection signals in the QNPs-ICAS sensor system, which was based on a double-antibody sandwich structure. Under optimum experimental conditions, the biosensor exhibited a broad linear range of 1-200 ng mL-1 and a low detection limit of 0.299 ng mL-1. Furthermore, the proposed immunosensor demonstrated high sensitivity, satisfactory selectivity, good reproducibility, and excellent recovery. Finally, the performance and applicability of our QNPs-based ICAS system were validated in clinical samples using a commercial ELISA kit with excellent correlations (r = 0.98451, n = 116). To conclude, the proposed sensor served as a rapid, sensitive, and accurate method for detecting fetuin-B in actual clinical samples, thereby demonstrating its potential for preliminary CAD screening and diagnosis.
Collapse
Affiliation(s)
- Jingyuan Hou
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Yue Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510180, China
| | - Qiaoting Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
4
|
Sulfianti A, Sopandi VT, Isnaeni I, Suryanggono J, Pambudi S, el Muttaqien S, Ningsih FN, Widayanti T, Mardliyati E, Annisa A. Antibody-labelled gold nanoparticles synthesized by laser ablation to detect SARS-CoV-2 antigen spike. ADMET AND DMPK 2023; 12:193-208. [PMID: 38560711 PMCID: PMC10974819 DOI: 10.5599/admet.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/29/2023] [Indexed: 04/04/2024] Open
Abstract
Background and purpose Rapid detection test via lateral flow immunoassay (LFIA) is employed as an alternate method to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Gold nanoparticles (AuNPs), a vital component of LFIA, can be synthesized by laser ablation technique. This intense laser radiation may result in monodisperse gold nanoclusters, which are impurity-free and demonstrate innovative biocompatible surface chemistry. In this current research, laser-ablated AuNPs are produced and coupled with an anti-spike SARS-CoV-2 monoclonal antibody (mAb) generated in our prior study. Experimental approach The AuNPs from 30,000 shots of laser ablation exhibited a robust red color with a maximum absorbance peak at 520 nm. The performance of AuNPs-mAb conjugates as a signal reporter was then evaluated in half-stick LFIA. Key results The size distribution of AuNPs shows a relatively monodisperse and unimodal distribution with average particle diameters of 44.77 nm and a surface potential of -38.5 mV. The purified anti-spike mAb SARS-CoV-2 yielded two protein bands, representing the mAb heavy chain at 55 kDa and its light chain at 25 kDa. The immobilization of anti-spike mAb onto the surface of AuNPs revealed that 25 g/ml of mAb at phosphate buffer pH 9 was required to stabilize the AuNPs. The functional test of this conjugate was performed using dipstick LFIA, and the result shows that the AuNPs-mAb conjugates could successfully detect commercial spike antigen of SARS-CoV-2 at 10 ng level. Conclusion In this study, laser-ablated AuNPs were functionalized with anti-spike mAb SARS-CoV-2 and successfully used as a signal reporter in half-stick LFIA for detecting antigen spike SARS-CoV-2.
Collapse
Affiliation(s)
- Asri Sulfianti
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Vidhia Tiara Sopandi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jalan Raya Bandung, Jatinangor, Sumedang, West Java 45361, Indonesia
| | - Isnaeni Isnaeni
- Research Center for Photonics, National Research and Innovation Agency Republic of Indonesia (BRIN), Physic Building no 15 442, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Jodi Suryanggono
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Sjaikhurrizal el Muttaqien
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Febby Nurdiya Ningsih
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Tika Widayanti
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency Republic of Indonesia (BRIN), LAPTIAB Building no 611-612, KST BJ Habibie, Serpong, Tangerang Selatan, Banten 15310, Indonesia
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Padjajaran University, Jalan Raya Bandung, Jatinangor, Sumedang, West Java 45361, Indonesia
| |
Collapse
|