1
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
2
|
Fu S, Dong Q, Fu Y, Luo R, Li J, Sun Y, Liu S, Qiu Y, Guo L, Hu J. Baicalin Relieves Glaesserella parasuis-Triggered Immunosuppression Through Polarization via MIF/CD74 Signaling Pathway in Piglets. Biomolecules 2025; 15:640. [PMID: 40427533 PMCID: PMC12108920 DOI: 10.3390/biom15050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Glaesserella parasuis (G. parasuis) infection is responsible for Glässer's disease in pigs. G. parasuis could trigger piglet immunosuppression, but the mechanism of inducing immunosuppression by G. parasuis remains unknown. Macrophage migration inhibitory factor (MIF)/CD74 axis has been shown to participate in inflammation response and immunosuppression, but the function of MIF/CD74 during immunosuppression elicited by G. parasuis has not been fully explored. This experiment explored the efficacy of baicalin on immunosuppression elicited by G. parasuis alleviation through regulating polarization via the MIF/CD74 signaling pathway. Our data indicated that baicalin reduced IL-1β, IL-6, IL-8, IL-18, TNF-α, and COX-2 expression, and regulated MIF/CD74 axis expression in the spleen. Immunohistochemistry analysis showed that baicalin enhanced CD74 protein levels in the spleen of piglets induced by G. parasuis. Baicalin regulated the PI3K/Akt/mTOR signaling pathway and RAF/MEK/ERK signaling activation, modified the expression of the autophagy-related proteins Beclin-1, P62, and LC3B, promoted M2 polarization to M1 polarization, and enhanced CD3, CD4, CD8, and TIM3 levels in the spleen of piglets elicited by G. parasuis. Our study reveals the important functions of the MIF/CD74 axis in G. parasuis-induced immunosuppression and may offer a new therapeutic method to control G. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiaoli Dong
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjian Fu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ronghui Luo
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingyang Li
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yamin Sun
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyu Liu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ling Guo
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jin Hu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Q.D.); (Y.F.); (R.L.); (J.L.); (Y.S.); (S.L.); (Y.Q.); (L.G.); (J.H.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Zhang S, Rao C, Wen M, Zhang X, Zha Z, Gu T, Zhu L, Yu C. Role of Peripheral Blood Regulatory T Cells and IL-2 in the Collateral Circulation of Acute Ischemic Stroke. Int J Gen Med 2025; 18:1075-1088. [PMID: 40026811 PMCID: PMC11871876 DOI: 10.2147/ijgm.s504218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Background Inflammation is recognized as a pivotal factor in the pathophysiology of acute ischemic stroke (AIS) and has the potential to influence the collateral circulation of patients. The objective of this investigation was to explore the link between peripheral regulatory T cells (Tregs), interleukin-2 (IL-2), and the status of collateral circulation. Methods Between September 2023 and May 2024, the study incorporated 117 AIS patients from the neurology department, with 60 identified as having good collateral status (GCS) and 57 with poor collateral status (PCS). Additionally, a control group of 46 healthy individuals was included. Collateral circulation in AIS patients was assessed via computed tomography angiography. The levels of peripheral blood Tregs were quantified through flow cytometry, while IL-2 was measured by ELISA. Results In this investigation, patients diagnosed with PCS demonstrated reduced Tregs (5.77 ± 1.55%) and IL-2 levels (7.37 ± 2.61 pg/mL) compared to individuals with GCS (7.09 ± 1.32%, 9.95 ± 3.58 pg/mL) and healthy controls (7.17 ± 1.40%,10.33 ± 4.01 pg/mL). Logistic regression analysis identified significant associations between Tregs and IL-2 levels and collateral circulation status (p<0.05), with diminished levels of both being independent predictors of PCS when compared to GCS. A nomogram was developed to forecast risk factors for collateral circulation, further highlighting the potential of plasma Tregs and IL-2 levels as biomarkers in predicting collateral circulation among AIS patients. The diagnostic performance of Tregs and IL-2 was assessed utilizing receiver operating characteristic (ROC) analysis. The area under the ROC curve (AUC) for Tregs in differentiating GCS from PCS patients was ascertained to be 0.741 (95% confidence interval [CI]: 0.652-0.830), while for IL-2, it was 0.710 (95% CI: 0.618-0.803). Moreover, the combined measurement of Tregs and IL-2 resulted in an AUC of 0.779 (95% CI: 0.695-0.863). Conclusion Plasma levels of peripheral blood Tregs and IL-2 may function as promising biomarkers for the prediction of collateral circulation status, suggesting potential new therapeutic approaches aimed at enhancing cerebral collateral circulation, and providing new therapeutic targets for acute ischemic stroke.
Collapse
Affiliation(s)
- Simin Zhang
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Chen Rao
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Meihai Wen
- Bengbu Medical University, Bengbu, Anhui Province, 233000, People’s Republic of China
| | - Xuke Zhang
- Bengbu Medical University, Bengbu, Anhui Province, 233000, People’s Republic of China
| | - Zhiwen Zha
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Tong Gu
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Lei Zhu
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| | - Chuanqing Yu
- The Medical School of Anhui University of Science & Technology, Huainan, Anhui Province, 232000, People’s Republic of China
- Department of Neurology, The First Hospital of Anhui University of Science & Technology (The First People’s Hospital of Huainan), Huainan, Anhui Province, 232000, People’s Republic of China
| |
Collapse
|
4
|
Mapuskar KA, London B, Zacharias ZR, Houtman JC, Allen BG. Immunometabolism in the Aging Heart. J Am Heart Assoc 2025; 14:e039216. [PMID: 39719411 PMCID: PMC12054428 DOI: 10.1161/jaha.124.039216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
Structural, functional, and molecular-level changes in the aging heart are influenced by a dynamic interplay between immune signaling and cellular metabolism that is referred to as immunometabolism. This review explores the crosstalk between cellular metabolic pathways including glycolysis, oxidative phosphorylation, fatty acid metabolism, and the immune processes that govern cardiac aging. With a rapidly aging population that coincides with increased cardiovascular risk and cancer incidence rates, understanding the immunometabolic underpinnings of cardiac aging provides a foundation for identifying therapeutic targets to mitigate cardiac dysfunction. Aging alters the immune environment of the heart by concomitantly driving the changes in immune cell metabolism, mitochondrial dysfunction, and redox signaling. Shifts in these metabolic pathways exacerbate inflammation and impair tissue repair, creating a vicious cycle that accelerates cardiac functional decline. Treatment with cancer therapy further complicates this landscape, as aging-associated immunometabolic disruptions augment the susceptibility to cardiotoxicity. The current review highlights therapeutic strategies that target the immunometabolic axis to alleviate cardiac aging pathologies. Interventions include modulating metabolic intermediates, improving mitochondrial function, and leveraging immune signaling pathways to restore cardiac health. Advances in immunometabolism thus hold significant potential for translating preclinical findings into therapies that improve the quality of life for the aging population and underscore the need for approaches that address the immunometabolic mechanisms of cardiac aging, providing a framework for future research.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Barry London
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Internal MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Zeb R. Zacharias
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Jon C.D. Houtman
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Human Immunology CoreUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Department of Microbiology and ImmunologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| | - Bryan G. Allen
- Department of Radiation OncologyUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
- Holden Comprehensive Cancer Center, Carver College of MedicineUniversity of Iowa Hospitals and Clinic, University of Iowa HealthcareIowa CityIAUSA
| |
Collapse
|
5
|
Singer M, Elsayed AM, Husseiny MI. Regulatory T-cells: The Face-off of the Immune Balance. FRONT BIOSCI-LANDMRK 2024; 29:377. [PMID: 39614434 DOI: 10.31083/j.fbl2911377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs. Signals received from antigen-presenting cells (APCs) stimulate Tregs to dampen inflammation. Almost all tumors are characterized by a pathological abundance of immune suppression in their microenvironment. Conversely, the lack thereof proves detrimental to immunological disorders. Achieving a balanced expression of Tregs in relation to other immune compartments is important in establishing an effective and adaptable immune tolerance towards cancer cells and autoantigens. In the context of cancer, it is essential to decrease the frequency of Tregs to overcome tumor suppression. A lower survival rate is associated with the presence of excessive exhausted effector immune cells and an increased frequency of regulatory cells. However, when it comes to treating graft rejection and autoimmune diseases, the focus lies on immune tolerance and the transfer of Tregs. Here, we explore the complex mechanisms that Tregs use in human disease to balance effector immune cells.
Collapse
Affiliation(s)
- Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Ahmed M Elsayed
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Peyster E, Smith D, Bittermann T, Bravo P, Margulies K. Beyond the Granuloma: New Insights into Cardiac Sarcoidosis Using Spatial Proteomics. RESEARCH SQUARE 2024:rs.3.rs-4289663. [PMID: 38766184 PMCID: PMC11100892 DOI: 10.21203/rs.3.rs-4289663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cardiac sarcoidosis is poorly understood, challenging to diagnose, and portends a poor prognosis. A lack of animal models necessitates the use of residual human samples to study sarcoidosis, which in turn necessitates the use of analytical tools compatible with archival, fixed tissue. We employed high-plex spatial protein analysis within a large cohort of archival human cardiac sarcoidosis and control tissue samples, studying the immunologic, fibrotic, and metabolic landscape of sarcoidosis at different stages of disease, in different cardiac tissue compartments, and in tissue regions with and without overt inflammation. Utilizing a small set of differentially expressed protein biomarkers, we also report the development of a predictive model capable of accurately discriminating between control cardiac tissue and sarcoidosis tissue, even when no histologic evidence of sarcoidosis is present. This finding has major translational implications, with the potential to markedly improve the diagnostic yield of clinical biopsies obtained from suspected sarcoidosis patients.
Collapse
|
8
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Joudar I, Aichouni N, Nasri S, Kamaoui I, Skiker I. Diagnostic criteria for myocarditis on cardiac magnetic resonance imaging: an educational review. Ann Med Surg (Lond) 2023; 85:3960-3964. [PMID: 37554854 PMCID: PMC10406012 DOI: 10.1097/ms9.0000000000001040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Acute myocarditis represents one of the most mysterious acute cardiovascular diseases due to the great diversity of its clinical presentation, ranging from simple symptoms such as flu-like syndrome to lethal conditions such as cardiogenic shock or sudden cardiac death. The diagnosis will be suspicious in the presence of chest pain in a subject with risk factors, and guided mainly by the ECG, biological markers, trans-thoracic echocardiography, and the cardiac MRI. In this sense, and returning to the pathophysiological bases of this condition, the positive diagnosis will rely mainly on the detection of tissue abnormalities secondary to the myocardial inflammatory storm. Cardiac MRI represents a diagnostic pillar, given the information it can provide, both in analyzing the morphology, and the myocardial function but also tissue abnormalities that represent the main element of the diagnostic criteria of Lake Louisse.
Collapse
Affiliation(s)
- Imane Joudar
- Faculty of Medicine and Pharmacy
- Department of Radiology, Mohammed VI University Hospital, Mohammed I University
| | - Narjisse Aichouni
- Faculty of Medicine and Pharmacy
- Department of Radiology, Mohammed VI University Hospital, Mohammed I University
| | - Siham Nasri
- Faculty of Medicine and Pharmacy
- Department of Radiology, Mohammed VI University Hospital, Mohammed I University
- Mohammed First University, Faculty of Medicine and Pharmacy, Lamcesm, Oujda, Morocco
| | - Imane Kamaoui
- Faculty of Medicine and Pharmacy
- Department of Radiology, Mohammed VI University Hospital, Mohammed I University
| | - Imane Skiker
- Faculty of Medicine and Pharmacy
- Department of Radiology, Mohammed VI University Hospital, Mohammed I University
- Mohammed First University, Faculty of Medicine and Pharmacy, Lamcesm, Oujda, Morocco
| |
Collapse
|
10
|
Ovchinnikov A, Filatova A, Potekhina A, Arefieva T, Gvozdeva A, Ageev F, Belyavskiy E. Blood Immune Cell Alterations in Patients with Hypertensive Left Ventricular Hypertrophy and Heart Failure with Preserved Ejection Fraction. J Cardiovasc Dev Dis 2023; 10:310. [PMID: 37504566 PMCID: PMC10380876 DOI: 10.3390/jcdd10070310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
(1) Background: Chronic inflammation and fibrosis are key players in cardiac remodeling associated with left ventricular hypertrophy (LVH) and heart failure with a preserved ejection fraction (HFpEF). Monocytes and T-helpers (Th) are involved in both pro-inflammatory and fibrotic processes, while regulatory T-cells (Treg) could be considered to suppress chronic inflammation in the hypertrophied myocardium. We aimed to estimate the relationship between the frequencies of circulating CD4+ T-cell and monocyte subpopulations and the variables of left ventricular (LV) diastolic function in patients with LVH depending on the presence of HFpEF. (2) Methods: We enrolled 57 patients with asymptomatic hypertensive LVH (n = 21), or LVH associated with HFpEF (n = 36). A clinical assessment and echocardiographs were analyzed. CD4+ Treg, activated Th (Th-act), and monocyte (classical, intermediate, and non-classical) subpopulations were evaluated via direct immunofluorescence and flow cytometry. (3) Results: Patients with HFpEF had a lower Treg/Th-act ratio (p = 0.001). Though asymptomatic patients and patients with HFpEF were comparable in terms of both the total monocyte number and monocyte subsets, there were moderate correlations between intermediate monocyte count and conventional and novel echocardiographic variables of LV diastolic dysfunction in patients with HFpEF. (4) Conclusions: In patients with LVH, the clinical deterioration (transition to HFpEF) and progression of LV diastolic dysfunction are probably associated with T-cell disbalance and an increase in intermediate monocyte counts.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Anastasiya Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Laboratory of Cell Immunology, Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Anna Gvozdeva
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Fail Ageev
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | | |
Collapse
|