1
|
Deng H, Wang Q, Tong X, Cui Z, Yang Y, Xiang Y. Recent advances of CAR-T cells in acute myeloid leukemia. Ther Adv Hematol 2025; 16:20406207251326802. [PMID: 40144774 PMCID: PMC11938459 DOI: 10.1177/20406207251326802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 03/28/2025] Open
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in adults, is a highly heterogeneous and aggressive hematologic malignancy. Since the 20th century, the combination of cytosine arabinoside and anthracyclines has been the most common chemotherapy drug used to treat patients with AML. Although, new targeted medicines have emerged, such as midostaurin and gilteritinib targeting FMS-like tyrosine kinase 3 (FLT3), ivosidenib (isocitrate dehydrogenase 1 (IDH1) inhibitor) and enasidenib (IDH2 inhibitor) targeting IDH, and gemtuzumab ozogamicin targeting CD33, which have changed the treatment strategies of AML. But, until now, hematopoietic stem cell transplantation remains the best treatment option in most cases. However, treatment resistance and relapse are still the major consequences of disease progression in AML, highlighting the urgent need for novel therapeutic approaches. As an alternative, chimeric antigen receptor (CAR)-T cells are engineered T-cells developed as a breakthrough in cancer therapy in recent years, and explored and used in various tumor types. In particular, it has achieved remarkable efficacy in the field of relapsed and refractory B lymphocyte tumors. This review mainly summarizes and discusses the research progress and the clinical application of CAR-T cell immunotherapy in AML in recent years.
Collapse
Affiliation(s)
- Huan Deng
- Department of Medical Laboratory, The People’s Hospital of Leshan, No. 238, Baita Street, Shizhong District, Leshan, Sichuan 614000, China
| | - Qi Wang
- Department of Medical Records and Statistics Room, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Xiaodong Tong
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Zhiwei Cui
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Yang Yang
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| | - Ying Xiang
- Department of Medical Laboratory, The People’s Hospital of Leshan, Leshan, Sichuan, China
| |
Collapse
|
2
|
Haubner S, Subklewe M, Sadelain M. Honing CAR T cells to tackle acute myeloid leukemia. Blood 2025; 145:1113-1125. [PMID: 39630061 DOI: 10.1182/blood.2024024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- Animals
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sascha Haubner
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Michel Sadelain
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| |
Collapse
|
3
|
Park H, Miyano S. Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow. J Comput Biol 2024; 31:1158-1178. [PMID: 39239711 DOI: 10.1089/cmb.2024.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
We focus on characterizing cell lines from young and aged-healthy and -AML (acute myeloid leukemia) cell lines, and our goal is to identify the key markers associated with the progression of AML. To characterize the age-related phenotypes in AML cell lines, we consider eigenCell analysis that effectively encapsulates the primary expression level patterns across the cell lines. However, earlier investigations utilizing eigenGenes and eigenCells analysis were based on linear combination of all features, leading to the disturbance from noise features. Moreover, the analysis based on a fully dense loading matrix makes it challenging to interpret the results of eigenCells analysis. In order to address these challenges, we develop a novel computational approach termed network-constrained eigenCells profile estimation, which employs a sparse learning strategy. The proposed method estimates eigenCell based on not only the lasso but also network constrained penalization. The use of the network-constrained penalization enables us to simultaneously select neighborhood genes. Furthermore, the hub genes and their regulator/target genes are easily selected as crucial markers for eigenCells estimation. That is, our method can incorporate insights from network biology into the process of sparse loading estimation. Through our methodology, we estimate sparse eigenCells profiles, where only critical markers exhibit expression levels. This allows us to identify the key markers associated with a specific phenotype. Monte Carlo simulations demonstrate the efficacy of our method in reconstructing the sparse structure of eigenCells profiles. We employed our approach to unveil the regulatory system of immunogenes in both young/aged-healthy and -AML cell lines. The markers we have identified for the age-related phenotype in both healthy and AML cell lines have garnered strong support from previous studies. Specifically, our findings, in conjunction with the existing literature, indicate that the activities within this subnetwork of CD79A could be pivotal in elucidating the mechanism driving AML progression, particularly noting the significant role played by the diminished activities in the CD79A subnetwork. We expect that the proposed method will be a useful tool for characterizing disease-related subsets of cell lines, encompassing phenotypes and clones.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- The Institute of Medical Science, Human Genome Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Huang P, Wen F, Tuerhong N, Yang Y, Li Q. Neoantigens in cancer immunotherapy: focusing on alternative splicing. Front Immunol 2024; 15:1437774. [PMID: 39055714 PMCID: PMC11269099 DOI: 10.3389/fimmu.2024.1437774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative splicing (AS) functions as a crucial program in transcriptional modulation, leading to proteomic diversity and functional alterations of proteins. These splicing actions induce various neoantigens that hold prognostic significance and contribute to various aspects of cancer progression, including immune responses against cancer. The advent of immunotherapy has remarkably revolutionized tumor therapy. In this regard, AS-derived neoantigens are potent targets for cancer vaccines and chimeric antigen receptor (CAR) T cell therapies. In this review, we outline that AS-derived neoantigens serve as promising immunotherapeutic targets and guide immunotherapy strategies. This evidence contributes to a deeper comprehension of the complexity of proteomic diversity and provides novel perspectives and techniques for precision medicine in immunotherapy. Moreover, we underscore the obstacles that are awaited to be addressed for this novel approach to become clinically applicable.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nuerye Tuerhong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Hu H, Tang L, Zhao Y, Cheng J, Huang M, You Y, Zou P, Lei Q, Zhu X, Guo AY. Single-cell analysis of the survival mechanisms of fratricidal CAR-T targeting of T cell malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102225. [PMID: 38948332 PMCID: PMC11214519 DOI: 10.1016/j.omtn.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy targeting T cell tumors still faces many challenges, one of which is its fratricide due to the target gene expressed on CAR-T cells. Despite this, these CAR-T cells can be expanded in vitro by extending the culture time and effectively eliminating malignant T cells. However, the mechanisms underlying CAR-T cell survival in cell subpopulations, the molecules involved, and their regulation are still unknown. We performed single-cell transcriptome profiling to investigate the fratricidal CAR-T products (CD26 CAR-Ts and CD44v6 CAR-Ts) targeting T cells, taking CD19 CAR-Ts targeting B cells from the same donor as a control. Compared with CD19 CAR-Ts, fratricidal CAR-T cells exhibit no unique cell subpopulation, but have more exhausted T cells, fewer cytotoxic T cells, and more T cell receptor (TCR) clonal amplification. Furthermore, we observed that fratricidal CAR-T cell survival was accompanied by target gene expression. Gene expression results suggest that fratricidal CAR-T cells may downregulate their human leukocyte antigen (HLA) molecules to evade T cell recognition. Single-cell regulatory network analysis and suppression experiments revealed that exhaustion mediated by critical regulatory factors may contribute to fratricidal CAR-T cell survival. Together, these data provide valuable and first-time insights into the survival of fratricidal CAR-T cells.
Collapse
Affiliation(s)
- Hui Hu
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Tang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuyan Zhao
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Lei
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Yuan Guo
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
6
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
7
|
Miao X, Shuai Y, Han Y, Zhang N, Liu Y, Yao H, Wang X, He G, Chen D, Fan F, Chang AH, Su Y, Yi H. Case report: Donor-derived CLL-1 chimeric antigen receptor T-cell therapy for relapsed/refractory acute myeloid leukemia bridging to allogeneic hematopoietic stem cell transplantation after remission. Front Immunol 2024; 15:1389227. [PMID: 38803489 PMCID: PMC11128603 DOI: 10.3389/fimmu.2024.1389227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background Explore the efficacy and safety of donor-derived CLL-1 chimeric antigen receptor T-cell therapy (CAR-T) for relapsed/refractory acute myeloid leukemia (R/R AML) bridging to allogeneic hematopoietic stem cell transplantation (allo-HSCT) after remission. Case presentation An adult R/R AML patient received an infusion of donor-derived CLL-1 CAR-T cells, and the conditioning regimen bridging to allo-HSCT was started immediately after remission on day 11 after CAR-T therapy upon transplantation. Then, routine post-HSCT monitoring of blood counts, bone marrow (BM) morphology, flow cytometry, graft-versus-host disease (GVHD) manifestations, and chimerism status were performed. Result After CAR-T therapy, cytokine release syndrome was grade 1. On day 11 after CAR-T therapy, the BM morphology reached complete remission (CR), and the conditioning regimen bridging to allo-HSCT started. Leukocyte engraftment, complete donor chimerism, and platelet engraftment were observed on days +18, +23, and +26 post-allo-HSCT, respectively. The BM morphology showed CR and flow cytometry turned negative on day +23. The patient is currently at 4 months post-allo-HSCT with BM morphology CR, negative flow cytometry, complete donor chimerism, and no extramedullary relapse/GVHD. Conclusion Donor-derived CLL-1 CAR-T is an effective and safe therapy for R/R AML, and immediate bridging to allo-HSCT after remission may better improve the long-term prognosis of R/R AML.
Collapse
Affiliation(s)
- Xiaojuan Miao
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Yanrong Shuai
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Ying Han
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Nan Zhang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Yilan Liu
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Hao Yao
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Xiao Wang
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Guangcui He
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Dan Chen
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Fangyi Fan
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Alex H. Chang
- Shanghai YaKe Biotechnology Ltd., Shanghai, China
- Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Su
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| | - Hai Yi
- Department of Hematology, People’s Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Gao C, Li X, Xu Y, Zhang T, Zhu H, Yao D. Recent advances in CAR-T cell therapy for acute myeloid leukaemia. J Cell Mol Med 2024; 28:e18369. [PMID: 38712978 PMCID: PMC11075639 DOI: 10.1111/jcmm.18369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a fatal and refractory haematologic cancer that primarily affects adults. It interferes with bone marrow cell proliferation. Patients have a 5 years survival rate of less than 30% despite the availability of several treatments, including chemotherapy, allogeneic haematopoietic stem cell transplantation (Allo-HSCT), and receptor antagonist drugs. Allo-HSCT is the mainstay of acute myeloid leukaemia treatment. Although it does work, there are severe side effects, such as graft-versus-host disease (GVHD). In recent years, chimeric antigen receptor (CAR)-T cell therapies have made significant progress in the treatment of cancer. These engineered T cells can locate and recognize tumour cells in vivo and release a large number of effectors through immune action to effectively kill tumour cells. CAR-T cells are among the most effective cancer treatments because of this property. CAR-T cells have demonstrated positive therapeutic results in the treatment of acute myeloid leukaemia, according to numerous clinical investigations. This review highlights recent progress in new targets for AML immunotherapy, and the limitations, and difficulties of CAR-T therapy for AML.
Collapse
Affiliation(s)
- Chi Gao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xin Li
- College of BiotechnologyTianjin University of Science and TechnologyTianjinChina
| | - Yao Xu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Tongcun Zhang
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
- Institute of Biology and MedicineWuhan University of Science and TechnologyWuhanChina
| | - Haichuan Zhu
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| | - Di Yao
- College of Life Science and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Rausch J, Ullrich E, Kühn MW. Epigenetic targeting to enhance acute myeloid leukemia-directed immunotherapy. Front Immunol 2023; 14:1269012. [PMID: 37809078 PMCID: PMC10556528 DOI: 10.3389/fimmu.2023.1269012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
AML is a malignant disease of hematopoietic progenitor cells with unsatisfactory treatment outcome, especially in patients that are ineligible for intensive chemotherapy. Immunotherapy, comprising checkpoint inhibition, T-cell engaging antibody constructs, and cellular therapies, has dramatically improved the outcome of patients with solid tumors and lymphatic neoplasms. In AML, these approaches have been far less successful. Discussed reasons are the relatively low mutational burden of AML blasts and the difficulty in defining AML-specific antigens not expressed on hematopoietic progenitor cells. On the other hand, epigenetic dysregulation is an essential driver of leukemogenesis, and non-selective hypomethylating agents (HMAs) are the current backbone of non-intensive treatment. The first clinical trials that evaluated whether HMAs may improve immune checkpoint inhibitors' efficacy showed modest efficacy except for the anti-CD47 antibody that was substantially more efficient against AML when combined with azacitidine. Combining bispecific antibodies or cellular treatments with HMAs is subject to ongoing clinical investigation, and efficacy data are awaited shortly. More selective second-generation inhibitors targeting specific chromatin regulators have demonstrated promising preclinical activity against AML and are currently evaluated in clinical trials. These drugs that commonly cause leukemia cell differentiation potentially sensitize AML to immune-based treatments by co-regulating immune checkpoints, providing a pro-inflammatory environment, and inducing (neo)-antigen expression. Combining selective targeted epigenetic drugs with (cellular) immunotherapy is, therefore, a promising approach to avoid unintended effects and augment efficacy. Future studies will provide detailed information on how these compounds influence specific immune functions that may enable translation into clinical assessment.
Collapse
Affiliation(s)
- Johanna Rausch
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Ullrich
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Children’s Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt, Germany
| | - Michael W.M. Kühn
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|