1
|
Xia J, Zhang J, Zhu H, Ding L. Drug-induced herpes zoster: a pharmacovigilance analysis of FDA adverse event reports from 2004 to 2024. Front Pharmacol 2025; 16:1565480. [PMID: 40206093 PMCID: PMC11979123 DOI: 10.3389/fphar.2025.1565480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Background Herpes zoster severely impacts patients' quality of life and therapeutic results. This research utilized data from the FDA Adverse Event Reporting System (FAERS) to examine the prevalence and attributes of drug-induced herpes zoster. Methods We analyzed FAERS reports about zoster from Q1 2004 to Q3 2024 and developed a list of possible pathogenic agents. Ranked the 30 medicines with the greatest incidence of reported herpes zoster cases. Statistical disproportionality analysis was employed to identify an elevated reporting frequency of herpes zoster linked to a particular medication. Results Herpes zoster was referenced in 50,164 FAERS reports from 2004 to 2024. The majority of the implicated drugs were immunosuppressants. Anifrolumab exhibited the greatest ROR and PRR ratings among the drugs evaluated. Furthermore, rozanolixizumab, tozinameran, elapegademase, and other medications not indicated for inducing herpes zoster were recognized, underscoring the necessity for increased clinical vigilance and awareness. Nonetheless, these correlations should be regarded with caution, as they do not establish a direct causative relationship. Conclusion This study underscores the need of pharmacovigilance in recognizing and comprehending drug-induced herpes zoster. Additional research is required to validate these findings and to design strategies for risk management and reduction to enhance treatment outcomes in patients.
Collapse
Affiliation(s)
- Jiali Xia
- Department of Dermatology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Zhang
- Department of Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongyu Zhu
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Ding
- Department of Dermatology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Liu S, Liang Y, Sheng B, Zhang R. Multiple sclerosis and COVID-19: a bidirectional Mendelian randomization study. Front Immunol 2024; 15:1451347. [PMID: 39493765 PMCID: PMC11527686 DOI: 10.3389/fimmu.2024.1451347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
This study aimed to investigate the potential relationship between multiple sclerosis (MS) and coronavirus disease 2019 (COVID-19) outcomes using Mendelian randomization analysis. Specifically, it evaluates whether genetic factors, including the single-nucleotide polymorphism (SNP) rs10191329, influence the susceptibility of MS patients to three COVID-19 outcomes [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, hospitalized COVID-19, and severe COVID-19]. This study utilized genome-wide association study summary statistics from the International Multiple Sclerosis Genetics Consortium to conduct a Mendelian randomization analysis. SNPs strongly associated with MS were selected to examine their impact on COVID-19 outcomes. The analysis focused on identifying any causal associations between MS and COVID-19 severity, as well as assessing the role of interferon beta (IFNβ) treatment in modifying these outcomes. The results suggest a potential association between MS and an increased risk of COVID-19, but individuals carrying the rs10191329 SNP appeared less likely to develop severe COVID-19. This SNP, located within the DYSF-ZNF638 locus, may influence immune responses and MS severity, highlighting its relevance for personalized treatment strategies. Importantly, no significant causal relationship was found between IFNβ treatment and the three COVID-19 outcomes, indicating that the findings in treated patients differ from those observed in untreated patients. This suggests that IFNβ may offer protective effects against SARS-CoV-2 in MS patients. These findings underscore the importance of genetic factors, such as rs10191329, in shaping the clinical outcomes of MS patients in the context of COVID-19. Further research should explore targeted therapies and personalized approaches for managing MS during the ongoing pandemic.
Collapse
Affiliation(s)
- Shitong Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yixin Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Binbin Sheng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Freedman MS, Coyle PK, Hellwig K, Singer B, Wynn D, Weinstock-Guttman B, Markovic-Plese S, Galazka A, Dangond F, Korich J, Reder AT. Twenty Years of Subcutaneous Interferon-Beta-1a for Multiple Sclerosis: Contemporary Perspectives. Neurol Ther 2024; 13:283-322. [PMID: 38206453 PMCID: PMC10951191 DOI: 10.1007/s40120-023-00565-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive, inflammatory disorder of the central nervous system. Relapsing-remitting MS (RRMS), the most common form of the disease, is characterized by transient neurological dysfunction with concurrent accumulation of disability. Over the past three decades, disease-modifying therapies (DMTs) capable of reducing the frequency of relapses and slowing disability worsening have been studied and approved for use in patients with RRMS. The first DMTs were interferon-betas (IFN-βs), which were approved in the 1990s. Among them was IFN-β-1a for subcutaneous (sc) injection (Rebif®), which was approved for the treatment of MS in Europe and Canada in 1998 and in the USA in 2002. Twenty years of clinical data and experience have supported the efficacy and safety of IFN-β-1a sc in the treatment of RRMS, including pivotal trials, real-world data, and extension studies lasting up to 15 years past initial treatment. Today, IFN-β-1a sc remains an important therapeutic option in clinical use, especially around pregnancy planning and lactation, and may also be considered for aging patients, in which MS activity declines and long-term immunosuppression associated with some alternative therapies is a concern. In addition, IFN-β-1a sc is used as a comparator in many clinical studies and provides a framework for research into the mechanisms by which MS begins and progresses.
Collapse
Affiliation(s)
- Mark S Freedman
- Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8L6, Canada.
- The Ottawa Hospital Research Institute, 501 Smyth, Ottawa, ON, K1H 8L6, Canada.
| | - Patricia K Coyle
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, New York, NY, 11794, USA
| | - Kerstin Hellwig
- Katholisches Klinikum Bochum, Ruhr University, 44787, Bochum, Germany
| | - Barry Singer
- The MS Center for Innovations in Care, Missouri Baptist Medical Center, 3009 N. Ballas Road, Suite 105B, St. Louis, MO, 63131, USA
| | - Daniel Wynn
- Neurology MS Center, Consultants in Neurology, Ltd, 1535 Lake Cook Road, Suite 601, Northbrook, IL, 60062, USA
| | - Bianca Weinstock-Guttman
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, 14215, USA
- Jacobs MS Center for Treatment and Research, Buffalo, NY, 14202, USA
- Pediatric MS Center, NY State MS Consortium, 1010 Main Street, Buffalo, NY, 14203, USA
| | - Silva Markovic-Plese
- Division of Neuroimmunology, Department of Neurology, Thomas Jefferson University, 900 Walnut St, Rm 305-B, Philadelphia, PA, 19107, USA
| | | | - Fernando Dangond
- EMD Serono Research & Development Institute Inc., an affiliate of Merck GKaA, Billerica, MA, 01821, USA
| | - Julie Korich
- EMD Serono Inc., an affiliate of Merck KGaA, Rockland, MA, 02370, USA
| | - Anthony T Reder
- Department of Neurology A-205, University of Chicago Medicine, MC-2030, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Cárdenas-Rodríguez N, Ignacio-Mejía I, Correa-Basurto J, Carrasco-Vargas H, Vargas-Hernández MA, Albores-Méndez EM, Mayen-Quinto RD, De La Paz-Valente R, Bandala C. Possible Role of Cannabis in the Management of Neuroinflammation in Patients with Post-COVID Condition. Int J Mol Sci 2024; 25:3805. [PMID: 38612615 PMCID: PMC11012123 DOI: 10.3390/ijms25073805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024] Open
Abstract
The post-COVID condition (PCC) is a pathology stemming from COVID-19, and studying its pathophysiology, diagnosis, and treatment is crucial. Neuroinflammation causes the most common manifestations of this disease including headaches, fatigue, insomnia, depression, anxiety, among others. Currently, there are no specific management proposals; however, given that the inflammatory component involves cytokines and free radicals, these conditions must be treated to reduce the current symptoms and provide neuroprotection to reduce the risk of a long-term neurodegenerative disease. It has been shown that cannabis has compounds with immunomodulatory and antioxidant functions in other pathologies. Therefore, exploring this approach could provide a viable therapeutic option for PCC, which is the purpose of this review. This review involved an exhaustive search in specialized databases including PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, and Clinical Trials. Phytocannabinoids, including cannabidiol (CBD), cannabigerol (CBG), and Delta-9-tetrahydrocannabinol (THC), exhibit significant antioxidative and anti-inflammatory properties and have been shown to be an effective treatment for neuroinflammatory conditions. These compounds could be promising adjuvants for PCC alone or in combination with other antioxidants or therapies. PCC presents significant challenges to neurological health, and neuroinflammation and oxidative stress play central roles in its pathogenesis. Antioxidant therapy and cannabinoid-based approaches represent promising areas of research and treatment for mitigating adverse effects, but further studies are needed.
Collapse
Affiliation(s)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, UDEFA, Mexico City 11200, Mexico;
| | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | | | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exal Manuel Albores-Méndez
- Subdirección de Investigación, Escuela Militar de Graduados en Sanidad, UDEFA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | | | - Reynita De La Paz-Valente
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Cindy Bandala
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| |
Collapse
|
5
|
Petrov GV, Galkina DA, Koldina AM, Grebennikova TV, Eliseeva OV, Chernoryzh YY, Lebedeva VV, Syroeshkin AV. Controlling the Quality of Nanodrugs According to Their New Property-Radiothermal Emission. Pharmaceutics 2024; 16:180. [PMID: 38399241 PMCID: PMC10891502 DOI: 10.3390/pharmaceutics16020180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies have shown that complexly shaped nanoparticles (NPs) have their intrinsic radiothermal emission in the millimeter range. This article presents a method for controlling the quality of nanodrugs-immunobiological preparations (IBPs)-based on the detection of their intrinsic radiothermal emissions. The emissivity of interferon (IFN) medicals, determined without opening the primary package, is as follows (µW/m2): IFN-α2b-80 ± 9 (105 IU per package), IFN-β1a-40 ± 5 (24 × 106 IU per package), IFN-γ-30 ± 4 (105 IU per package). The emissivity of virus-like particles (VLP), determined using vaccines Gam-VLP-multivac (120 μg) in an injection bottle (crimp cap vials), was as follows: 12 ± 1 µW/m2, Gam-VLP-rota vaccines-9 ± 1 µW/m2. This study shows the reproducibility of emissivity over the course of a year, subject to the storage conditions of the immunobiological products. It has been shown that accelerated aging and a longer shelf life are accompanied by the coagulation of active NPs, and lead to a manyfold drop in emissivity. The dependence of radiothermal emission on temperature has a complex, non-monotonic nature. The emission intensity depends on the form of dosage, but remains within the order of magnitude for IFN-α2b for intranasal aqueous solution, ointments, and suppositories. The possibility of the remote quantitative control of the first phases of the immune response (increased synthesis of IFNs) to the intranasal administration of VLP vaccines has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Gleb V. Petrov
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Daria A. Galkina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Alena M. Koldina
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Tatiana V. Grebennikova
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Olesya V. Eliseeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Yana Yu. Chernoryzh
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Varvara V. Lebedeva
- Federal Government Budgetary Institution “National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia
| | - Anton V. Syroeshkin
- Department of Pharmaceutical and Toxicological Chemistry, Medical Institute, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells. BIOLOGICS 2023; 3:232-252. [DOI: 10.3390/biologics3030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryu Yashiro
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|