1
|
Tumenbayar BI, Pham K, Biber JC, Tutino VM, Brazzo JA, Yao P, Bae Y. FAK and p130Cas Modulate Stiffness-Mediated Early Transcription and Cellular Metabolism. Cytoskeleton (Hoboken) 2025; 82:197-215. [PMID: 39651636 PMCID: PMC11906264 DOI: 10.1002/cm.21971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals, such as substrate stiffness, to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff substrate altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces substrate stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.
Collapse
Affiliation(s)
- Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John C. Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Song S, Yang R, Su Y, Wang F. Role of semaphorin7A in epithelial-mesenchymal transition and proliferative vitreoretinopathy. Exp Eye Res 2025; 250:110153. [PMID: 39566570 DOI: 10.1016/j.exer.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Proliferative vitreoretinopathy (PVR) is a multifactorial ocular condition characterized by the development of fibrotic membranes inside the vitreous cavity and on the detached retina, which can result in severe blindness. Semaphorin7A (Sema7a) is involved in axon growth, inflammatory responses, and immune regulation; however, its role in PVR and regulatory mechanisms in retinal pigment epithelium (RPE) cells remains unclear. This study aimed to examine Sema7a in PVR and the underlying mechanisms. Transcriptome sequencing was used to investigate the changes in mRNA expression profiles. Western blotting, immunofluorescence, and real-time polymerase chain reaction (RT-PCR) were utilized to investigate the potential mechanism of Sema7a on epithelial-mesenchymal transition (EMT) in RPE cells. Stimulating RPE cells with transforming growth factor beta-1 (TGF-β1) decreased the levels of epithelial markers but increased those of mesenchymal markers. Based on transcriptome sequencing, many molecules associated with PVR progression were regulated. PVR vitreous fluid proteomics data analysis showed that Sema7a significantly changed at different levels. Silencing Sema7a in RPE cells attenuated TGF-β1-induced EMT and their ability to induce experimental PVR; in contrast, recombinant Sema7a (rSema7a) directly triggered EMT in RPE cells. TGF-β1 induction mechanically activated the PI3k-AKT and MAPK pathways, while Sema7a knockdown by short interfering RNA lowered the phosphorylation of the PI3k-AKT/MAPK signaling pathway. Therefore, Sema7a may be a viable therapeutic target for PVR due to its crucial role in the TGF-β1-induced EMT of RPE cells.
Collapse
Affiliation(s)
- Shuang Song
- Department of Ophthalmology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; Future Medical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rufei Yang
- Department of Ophthalmology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Su
- Department of Ophthalmology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Bick F, Brenis Gómez CM, Lammens I, Van Moorleghem J, De Wolf C, Dupont S, Dumoutier L, Smith NP, Villani AC, Browaeys R, Alladina J, Haring AM, Medoff BD, Cho JL, Bigirimana R, Vieira J, Hammad H, Blanchetot C, Schuijs MJ, Lambrecht BN. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma. J Allergy Clin Immunol 2024; 154:1129-1145. [PMID: 39147327 DOI: 10.1016/j.jaci.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Asthma is often accompanied by type 2 immunity rich in IL-4, IL-5, and IL-13 cytokines produced by TH2 lymphocytes or type 2 innate lymphoid cells (ILC2s). IL-2 family cytokines play a key role in the differentiation, homeostasis, and effector function of innate and adaptive lymphocytes. OBJECTIVE IL-9 and IL-21 boost activation and proliferation of TH2 and ILC2s, but the relative importance and potential synergism between these γ common chain cytokines are currently unknown. METHODS Using newly generated antibodies, we inhibited IL-9 and IL-21 alone or in combination in various murine models of asthma. In a translational approach using segmental allergen challenge, we recently described elevated IL-9 levels in human subjects with allergic asthma compared with nonasthmatic controls. Here, we also measured IL-21 in both groups. RESULTS IL-9 played a central role in controlling innate IL-33-induced lung inflammation by promoting proliferation and activation of ILC2s in an IL-21-independent manner. Conversely, chronic house dust mite-induced airway inflammation, mainly driven by adaptive immunity, was solely dependent on IL-21, which controlled TH2 activation, eosinophilia, total serum IgE, and formation of tertiary lymphoid structures. In a model of innate on adaptive immunity driven by papain allergen, a clear synergy was found between both pathways, as combined anti-IL-9 or anti-IL-21 blockade was superior in reducing key asthma features. In human bronchoalveolar lavage samples we measured elevated IL-21 protein within the allergic asthmatic group compared with the allergic control group. We also found increased IL21R transcripts and predicted IL-21 ligand activity in various disease-associated cell subsets. CONCLUSIONS IL-9 and IL-21 play important and nonredundant roles in allergic asthma by boosting ILC2s and TH2 cells, revealing a dual IL-9 and IL-21 targeting strategy as a new and testable approach.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, Zwijnaarde, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claudia M Brenis Gómez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Inés Lammens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Dupont
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jehan Alladina
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Alexis M Haring
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Shu L, Zheng B, Liu Y, Wang J, Li C, Xiong P, Gu Y, Shen Y, Yang Y. Piezo1 regulates TGF-β1 induced epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps. Mol Immunol 2024; 175:63-73. [PMID: 39305849 DOI: 10.1016/j.molimm.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 11/11/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is involved in local tissue remodeling in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the function of Piezo1 in EMT process remains unclear. This study aimed to characterize potential roles of Piezo1 in EMT process in CRSwNP. METHODS Overall, 22 nasal polyp (NP) tissues from patients with CRSwNP and 20 middle turbinate from healthy individuals were obtained during surgery. The expression of Piezo1, E-cadherin, vimentin, and α-smooth muscle actin (α-SMA) was measured by using western blot (Wb) in NP tissues and primary human nasal epithelial cells (pHNECs) and the location and level were assessed by immunofluorescence staining. BEAS-2B cells were stimulated with transforming growth factor (TGF)-β1 to induce EMT in vitro model and examined using qRT-PCR. BEAS-2B cells were treated with Yoda1 and RuR to calculate protein level by Wb analysis. Yoda1 and RuR treated NP murine model was evaluated by H&E (hematoxylin-eosin) staining and immunohistochemistry. RESULTS Compared with the control group, E-cadherin was decreased while the level of Piezo1, vimentin, and α-SMA was increased in NP group. Piezo1, vimentin, and α-SMA were upregulated in TGF-β1-induced BEAS-2B cells. Yoda1 inhibited E-cadherin expression and promoted Piezo1 and the aforementioned mesenchymal markers, whereas RuR showed contrary results. The results from the murine model treated with Yoda1 and RuR were consistent with those results in the EMT model in vitro. CONCLUSION Piezo1 is linked with EMT process in CRSwNP and the activation of Piezo1 exacerbates EMT process of nasal polyps.
Collapse
Affiliation(s)
- Longlan Shu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Bowen Zheng
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yijun Liu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Chenxi Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Panhui Xiong
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yue Gu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yang Shen
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yucheng Yang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
5
|
Li L, Li G, Guan R, Ma H, Xing Q. Inhibition of long non-coding RNA NEAT1 suppressed the epithelial mesenchymal transition through the miR-204-5p/Six1 axis in asthma. PLoS One 2024; 19:e0312020. [PMID: 39423195 PMCID: PMC11488729 DOI: 10.1371/journal.pone.0312020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory condition, is characterized by airway remodeling. Long non-coding RNA (lncRNA) NEAT1 has been demonstrated to participate in airway fibrosis. Furthermore, the miR-204-5p/Six1 axis significantly influences epithelial mesenchymal transition (EMT). However, the function of NEAT1/miR-204-5p/Six1 in asthmatic EMT remains unclear. PURPOSE This study intends to elucidate the function of NEAT1/miR-204-5p/Six1 axis in asthmatic EMT. METHODS TGF-β1 was used to induce the EMT model in BEAS-2B cells. Immunofluorescence and western blot were executed to verify the establishment of the EMT model. NEAT1, miR-204-5p, and Six1 expression levels were evaluated using RT-qPCR. The role of NEAT1 in EMT in vitro was explored by CCK8 assays and flow cytometry. The luciferase reporter assay was performed to validate the interaction between NEAT1 and miR-204-5p/Six1. RESULTS NEAT1 expression was increased during EMT. Functional experiments showed that the knockdown of NEAT1 suppressed cell proliferation and promoted cell apoptosis in vitro. Furthermore, inhibition of NEAT1 decreased the expression of N-cadherin, vimentin, and α-SMA and increased the expression of E-cadherin. Mechanistically, NEAT1 was identified as a sponge for miR-204-5p, and Six1 was found to be a direct target of miR-204-5p. CONCLUSION Down-regulation of NEAT1 reduced the Six1 expression via targeting miR-204-5p to inhibit the process of EMT in asthma. This study may provide new insight to reveal the underlying mechanisms of asthma.
Collapse
Affiliation(s)
- Lei Li
- Respiratory & Cardiovascular Pediatrics Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoju Li
- Birth Defect Prevention and Control Centre of Qingdao, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Renzheng Guan
- Respiratory & Cardiovascular Pediatrics Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Ma
- Respiratory & Cardiovascular Pediatrics Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Quansheng Xing
- Birth Defect Prevention and Control Centre of Qingdao, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
7
|
Rosik J, Kulpa J, Szczepanik M, Pawlik A. The Role of Semaphorins in the Pathogenesis of Rheumatoid Arthritis. Cells 2024; 13:618. [PMID: 38607057 PMCID: PMC11011349 DOI: 10.3390/cells13070618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases. Inflammation of the synovial fluid propagates the pathological process of angiogenesis. Semaphorins play a crucial role in the context of endothelial cell function, and their pleiotropic nature has various effects on the further development of RA. This narrative review summarises the various roles of semaphorins in the pathology of RA and whether they could play a role in developing novel RA treatment options.
Collapse
Affiliation(s)
- Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.R.); (J.K.); (M.S.)
| | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.R.); (J.K.); (M.S.)
| |
Collapse
|