1
|
Zhang JW, Lai RM, Wang LF, Wang SL, Xue HX, Li C, Zheng ZZ, Li J, Zhu YY, Zeng DW, Chen J, Ou QS, Chen TB, Xun Z, Jiang JJ, Zheng Q. Varied immune responses of HBV-specific B cells in patients undergoing pegylated interferon-alpha treatment for chronic hepatitis B. J Hepatol 2024; 81:960-970. [PMID: 38992769 DOI: 10.1016/j.jhep.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND & AIMS The changes in HBV-specific B cells in patients with chronic hepatitis B (CHB) undergoing pegylated interferon-α (PEG-IFNα) treatment and achieving functional cure remain unclear. We aimed to evaluate the alterations in HBV-specific B cells during treatment and therefore explored the mechanism of functional recovery of HBsAg-specific B cells. METHODS We included 39 nucleos(t)ide analogue-treated patients with CHB who received sequential combination therapy with PEG-IFNα and eight treatment-naïve patients. HBV-specific B cells were characterized ex vivo using fluorescently labeled hepatitis B surface and core antigens (HBsAg and HBcAg). The frequency, phenotype, and subsets of HBV-specific B cells and follicular helper T cells (Tfh cells) were detected using flow cytometry. The functionality of HBV-specific B cells was quantified through ELISpot assays. RESULTS During treatment, the fraction of activated memory B cells (MBCs) among HBsAg-specific B cells and the expression of IgG, CXCR3, and CD38 increased. The antibody-secretion capacity of HBsAg-specific B cells was only restored in patients achieving a functional cure after treatment and it positively correlated with serum hepatitis B surface antibody levels. The phenotype and function of HBsAg-specific B cells differed between patients with and without functional cure. Patients with functional cure exhibited IgG+ classical MBCs and plasmablasts among HBsAg-specific B cells. HBcAg-specific B cells displayed both attenuated antibody secretion with reduced IgG expression and an IgM+ atypical type of MBC after treatment, irrespective of functional cure. The number of CD40L+ Tfh cells increased after PEG-IFNα treatment and positively correlated with HBsAg-specific B-cell activation. CONCLUSIONS After PEG-IFNα treatment, HBsAg- and HBcAg-specific B cells exhibit various changes in antibody secretion. Their functional differences are reflected in the alterations in phenotypes and subtypes. The presence of CD40L+ Tfh cells is associated with the active recovery of HBsAg-specific B cells. IMPACT AND IMPLICATIONS HBV-related complications and hepatocellular carcinoma remain the leading causes of mortality from chronic liver disease worldwide, and a cure is rarely achieved with antiviral therapies. Elucidating the immunological mechanisms underlying the functional cure of patients with chronic hepatitis B offers a promising therapeutic strategy for viral clearance, e.g. via therapeutic vaccination. We analyzed the alterations in HBV-specific B cells in patients treated with pegylated interferon-α and identified novel pathways for immunotherapeutic boosting of B cell immunity.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Rui-Min Lai
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Long-Fei Wang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Si-Ling Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Amoy 361100, Fujian Province, China
| | - Han-Xin Xue
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Chen Li
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Zi-Zheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Amoy 361100, Fujian Province, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu Province, China
| | - Yue-Yong Zhu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Da-Wu Zeng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Jing Chen
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Qi-Shui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Tian-Bin Chen
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China.
| | - Jia-Ji Jiang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China.
| | - Qi Zheng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian Province, China.
| |
Collapse
|
2
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Ou G, Qing L, Zhang L, Yang Y, Ye G, Peng L, Li Y, Yang L, Liu Y. Cytokine IL-5 and HGF: combined prediction of non-/low immune response to hepatitis B vaccination at birth in infants born to HBsAg-positive mothers. Front Cell Infect Microbiol 2024; 14:1332666. [PMID: 38495649 PMCID: PMC10940320 DOI: 10.3389/fcimb.2024.1332666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background The immune response to hepatitis B vaccine may be influenced by numerous factors, and patients with non/low response re-exposed to hepatitis B virus remain susceptible. Thus, a better understanding of the underlying mechanisms of non/low immune response in infants born to Hepatitis B surface antigen (HBsAg)-positive mothers is essential. Methods 100 infants born to HBsAg-positive mothers from 2015 to 2020 were enrolled in the study, further divided into the non/low response group (n=13) and the moderate strong response group (n=87) based on the quantification of hepatitis B surface antibody at 12 months of age. The differential expression of 48 immune-related cytokines in the two groups was compared and analyzed in detail. The key cytokines were further identified and clinically predictive models were developed. Results We found that 13 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group, compared with the moderate strong response group at birth. In addition, 9 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group at 12 months of age. Furthermore, we found that IL-5 and HGF were promising predictors for predicting the immunization response to hepatitis B vaccine in infants, and the combination of the two cytokines showed the best predictive efficiency, with an area under the curve (AUC) value of 0.844. Conclusion The present study provides a theoretical basis on cytokines for developing and implementing effective immunotherapies against non/low immune response in infants born to HBsAg-positive mothers.
Collapse
Affiliation(s)
- Guanyong Ou
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ling Qing
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Graduate Collaborative Training Base of Shenzhen Third People’s Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Graduate Collaborative Training Base of Shenzhen Third People’s Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Yang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guoguo Ye
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Ling Peng
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanjie Li
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Liuqing Yang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Jacobs R, Dogbey MD, Mnyandu N, Neves K, Barth S, Arbuthnot P, Maepa MB. AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms 2023; 11:2985. [PMID: 38138129 PMCID: PMC10745739 DOI: 10.3390/microorganisms11122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) has afflicted humankind for decades and there is still no treatment that can clear the infection. The development of recombinant adeno-associated virus (rAAV)-based gene therapy for HBV infection has become important in recent years and research has made exciting leaps. Initial studies, mainly using mouse models, showed that rAAVs are non-toxic and induce minimal immune responses. However, several later studies demonstrated rAAV toxicity, which is inextricably associated with immunogenicity. This is a major setback for the progression of rAAV-based therapies toward clinical application. Research aimed at understanding the mechanisms behind rAAV immunity and toxicity has contributed significantly to the inception of approaches to overcoming these challenges. The target tissue, the features of the vector, and the vector dose are some of the determinants of AAV toxicity, with the latter being associated with the most severe adverse events. This review discusses our current understanding of rAAV immunogenicity, toxicity, and approaches to overcoming these hurdles. How this information and current knowledge about HBV biology and immunity can be harnessed in the efforts to design safe and effective anti-HBV rAAVs is discussed.
Collapse
Affiliation(s)
- Ridhwaanah Jacobs
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Makafui Dennis Dogbey
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
| | - Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Keila Neves
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa; (M.D.D.)
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
5
|
Wu X, Zhou Z, Cao Q, Chen Y, Gong J, Zhang Q, Qiang Y, Lu Y, Cao G. Reprogramming of Treg cells in the inflammatory microenvironment during immunotherapy: a literature review. Front Immunol 2023; 14:1268188. [PMID: 37753092 PMCID: PMC10518452 DOI: 10.3389/fimmu.2023.1268188] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Regulatory T cells (Treg), as members of CD4+ T cells, have garnered extensive attention in the research of tumor progression. Treg cells have the function of inhibiting the immune effector cells, preventing tissue damage, and suppressing inflammation. Under the stimulation of the tumor inflammatory microenvironment (IM), the reprogramming of Treg cells enhances their suppression of immune responses, ultimately promoting tumor immune escape or tumor progression. Reducing the number of Treg cells in the IM or lowering the activity of Treg cells while preventing their reprogramming, can help promote the body's anti-tumor immune responses. This review introduces a reprogramming mechanism of Treg cells in the IM; and discusses the regulation of Treg cells on tumor progression. The control of Treg cells and the response to Treg inflammatory reprogramming in tumor immunotherapy are analyzed and countermeasures are proposed. This work will provide a foundation for downregulating the immunosuppressive role of Treg in the inflammatory environment in future tumor immunotherapy.
Collapse
Affiliation(s)
- Xinyan Wu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhigang Zhou
- Department of Oncology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Gong
- School of Public Health, Nanchang University, Qianhu, Nanchang, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Yanfeng Lu
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Yousefpoor N, Mahdavian M, Pourbagher Z, Ahmadi Ghezeldasht S, Mosavat A, Ziaee M, Bahreini M, Soleimanpour S, Sharifmoghadam MR, Valizadeh N, Asghari A, Tabarraie A, Rezaee SA. Role of host immunity and HBx among inactive chronic hepatitis B patients in a highly endemic region. Microb Pathog 2023:106170. [PMID: 37257667 DOI: 10.1016/j.micpath.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The hepatitis B virus (HBV) infection has a wide range, from fulminant hepatitis to inactive chronic hepatitis B (ICB) infection. The present study evaluated critical factors in the outcomes of HBV infection in a highly endemic region of Iran (approximately 12% HBV positive). The expression of seven genes involved in host immunity (Foxp3, T-bet, ROR-γt, AKT, CREB, IL-28/or IFN-λ2, and IL-28R) and HBx for viral activities were evaluated using real-time PCR, TaqMan method. A total of 58 subjects were randomly chosen, including 28 ICB and 30 healthy controls (HCs) from the Esfandiar district, South Khorasan province, Iran. The expression index of Foxp3 and ROR-γt was moderately up-regulated in ICBs but did not statistically significant. T-bet expression in ICB patients was significantly higher than in HCs (p = 0.004). Furthermore, evaluating two signalling pathways in Th activation and cell survival showed that the CREB pathway was significantly up-regulated in ICB patients compared to HCs (p = 0.006), but the AKT did not differ. In innate immune responses, the IL-28/or IFN-λ2 expression in ICB patients was significantly higher than in the HCs (p = 0.02). Surprisingly, only one ICB patient disclosed HBx expression, which shows deficient virus activity in these patients. The ICB condition seems to result from host immune pressure on HBV activities, up-regulation of T-bet and IFN-λ. The high expression of CREB may prevent Kupffer's pro-inflammatory reactions in the liver. Whereas the absence of HBx expression in ICB patients and, consequently, the inactivity of HBV may also confirm such immune pressure.
Collapse
Affiliation(s)
- Nafise Yousefpoor
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Malihe Mahdavian
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohre Pourbagher
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Masood Ziaee
- Birjand Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Bahreini
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghvan Asghari
- Birjand Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Alijan Tabarraie
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|