1
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and cell specific HMGB1 secretion and subepithelial infiltrate formation in adenovirus keratitis. PLoS Pathog 2025; 21:e1013184. [PMID: 40367285 DOI: 10.1371/journal.ppat.1013184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rahul Kumar
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emanuel Garcia
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rama R Gullapali
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
2
|
Yu C, Xu Y. Development and validation of a nomogram for predicting severe adenovirus pneumonia in children. Front Pediatr 2025; 13:1428090. [PMID: 40309168 PMCID: PMC12040940 DOI: 10.3389/fped.2025.1428090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Background Adenovirus is a common respiratory pathogen in children. Severe adenovirus pneumonia(SAP) can cause serious complications in children. In this study, The nomogram we developed quantifies the severity of adenoviral pneumonia into percentage risk in a scientific, simple, intuitive, and effective manner, showing unique advantages compared to current empirical assessments and chart evaluations. Methods 228 children with adenoviral pneumonia admitted to the Respiratory Department of Tianjin Children's Hospital from January 2020 to January 2024 were collected. According to the clinical manifestations, the patients were divided into SAP (SAP) group and general adenoviral pneumonia (GAP) group. The clinical manifestations, laboratory indexes and some imaging data of the two groups were observed. Univariate and multivariate logical regression were used to select the variables of SAP. Select the prediction factor, construct the prediction model, and express the prediction factor with nomogram. Calibration curve, ROC curve and clinical decision curve were used to evaluate the performance and clinical practicability of the prediction model. Results The time of fever and complications in SAP group were longer than those in GAP group. The data of diagnosis and prediction of adenoviral pneumonia and clinical significance were included in logical regression. Univariate logical regression was performed first, followed by multivariate logical regression, atelectasis (OR = 2.757; 95%CI, 1.454-5.34), FER (OR = 2.232; 95%CI, 1.442-3.536), IL-6 (OR = 2.001; 95%CI, 1.368-3.009), LDH (OR = 2.860; 95%CI, 1.839-4.680) were independent significant predictors of SAP. The probability of prediction is consistent with that of observation in the training queue (0.819) and the verification queue (0.317). The area under the ROC curve of the model group and verification group was 0.873 (95%CI: 0.82-0.926) and 0.738 (95%CI: 0.620-0.856), respectively. The clinical decision curve indicated that the prediction model had high clinical practicability. Conclusion Atelectasis, LDH and IL-6 are predictive factors of SAP. The construction of clinical predictive model nomogram plays a key role in simple and efficient judgment of the occurrence and development of SAP, and has value in guiding clinical treatment.
Collapse
Affiliation(s)
| | - Yongsheng Xu
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| |
Collapse
|
3
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and Cell Specific HMGB1 Secretion and Subepithelial Infiltrate Formation in Adenovirus Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631509. [PMID: 39829903 PMCID: PMC11741304 DOI: 10.1101/2025.01.07.631509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
|
4
|
Shang P, Gan M, Wei Z, Hu S, Song L, Feng J, Chen L, Niu L, Wang Y, Zhang S, Shen L, Zhu L, Zhao Y. Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis. Front Microbiol 2024; 15:1503130. [PMID: 39735183 PMCID: PMC11671501 DOI: 10.3389/fmicb.2024.1503130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections. There are four main pathways through which pathogenic microorganisms induce pyroptosis: the canonical inflammasome pathway, the non-canonical inflammasome pathway, the apoptosis-associated caspase-mediated pathway, and the granzyme-mediated pathway. This article provides a brief overview of the effects and mechanisms of pathogen infections on pyroptosis.
Collapse
Affiliation(s)
- Pan Shang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Ziang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Shijie Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Jinkang Feng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Wen S, Xu M, Jin W, Zeng L, Lin Z, Yu G, Lv F, Zhu L, Xu C, Zheng Y, Dong L, Lin L, Zhang H. Risk factors and prediction models for bronchiolitis obliterans after severe adenoviral pneumonia. Eur J Pediatr 2024; 183:1315-1323. [PMID: 38117354 DOI: 10.1007/s00431-023-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Severe adenoviral pneumonia (SAP) can cause post-infectious bronchiolitis obliterans (PIBO) in children. We aimed to investigate the relevant risk factors for PIBO and develop a predictive nomogram for PIBO in children with SAP. This prospective study analysed the clinical data of hospitalised children with SAP and categorised them into the PIBO and non-PIBO groups. Least absolute shrinkage and selection operator (LASSO) regressions were applied to variables that exhibited significant intergroup differences. Logistic regression was adopted to analyse the risk factors for PIBO. Additionally, a nomogram was constructed, and its effectiveness was assessed using calibration curves, C-index, and decision curve analysis. A total of 148 hospitalised children with SAP were collected in this study. Among them, 112 achieved favourable recovery, whereas 36 developed PIBO. Multivariable regression after variable selection via LASSO revealed that aged < 1 year (OR, 2.38, 95% CI, 0.82-6.77), admission to PICU (OR, 24.40, 95% CI, 7.16-105.00), long duration of fever (OR, 1.16, 95% CI, 1.04-1.31), and bilateral lung infection (OR, 8.78, 95% CI, 1.32-195.00) were major risk factors for PIBO. The nomogram model included the four risk factors: The C-index of the model was 0.85 (95% CI, 0.71-0.99), and the area under the curve was 0.85 (95% CI, 0.78-0.92). The model showed good calibration with the Hosmer-Lemeshow test (χ2 = 8.52, P = 0.38) and was useful in clinical settings with decision curve analysis. CONCLUSION Age < 1 year, PICU admission, long fever duration, and bilateral lung infection are independent risk factors for PIBO in children with SAP. The nomogram model may aid clinicians in the early diagnosis and intervention of PIBO. WHAT IS KNOWN • Adenoviruses are the most common pathogens associated with PIBO. • Wheezing, tachypnoea, hypoxemia, and mechanical ventilation are the risk factors for PIBO. WHAT IS NEW • Age < 1 year, admission to PICU, long duration of fever days, and bilateral lung infection are independent risk factors for PIBO in children with SAP. • A prediction model presented as a nomogram may help clinicians in the early diagnosis and intervention of PIBO.
Collapse
Affiliation(s)
- Shunhang Wen
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Ming Xu
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Weigang Jin
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Luyao Zeng
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Zupan Lin
- Department of Pediatrics, Jinhua Maternal and Child Health Care Hospital, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Gang Yu
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Fangfang Lv
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lili Zhu
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Changfu Xu
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yangming Zheng
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Lin Dong
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Li Lin
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Hailin Zhang
- Department of Children's Respiration Disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|