1
|
Wang J, Liao C, Luo J, Li M, Gu L, Li X, Chen L. NEIL3 Deficiency Enhances HCC Cell Sensitivity to Oxaliplatin by Inhibiting the Fanconi Anaemia Pathway. Cell Biol Int 2025. [PMID: 40263742 DOI: 10.1002/cbin.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Despite some achievements in oxaliplatin-based chemotherapy for the treatment of advanced hepatocellular carcinoma (HCC), the abnormal activation of DNA damage repair pathways in HCC cells remains a major problem, limiting the efficacy of oxaliplatin-based chemotherapy. In a previous study, we found that endonuclease VIII-like protein 3 (NEIL3) is expressed in a high proportion of patients with HCC and associated with an unfavourable prognosis. However, the role of NEIL3 in chemoresistance is still unclear. The aim of this study was to evaluate whether and how NEIL3 regulates oxaliplatin anti-tumour efficacy. Gene expression after oxaliplatin treatment in HCC cell lines was assessed by real-time quantitative PCR, western blot analysis and bioinformatics analysis. The effect of NEIL3 on regulating oxaliplatin efficacy was assessed using cell counting kit-8 assays, colony formation assays, flow cytometry and an in vivo nude mice study. Mechanistic insights into the sensitivity to oxaliplatin mediated by the inhibition of NEIL3 were obtained through immunofluorescence and RNA sequencing analyses. Our findings demonstrated that NEIL3 expression was markedly downregulated after oxaliplatin administration. NEIL3 knockdown impaired cell viability and colony formation and increased apoptosis in HCC cells exposed to oxaliplatin. In addition, NEIL3 inhibition reduced tumour progression and enhanced oxaliplatin efficacy in xenograft nude mice models. Furthermore, knocking down NEIL3 significantly increased the oxaliplatin-mediated inhibition of the Fanconi anaemia pathway. Our results revealed that NEIL3 may be a promising therapeutic target for improving oxaliplatin efficacy in the treatment of HCC.
Collapse
Affiliation(s)
- Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Mingna Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhang T, Ren C, Yang Z, Zhang N, Tang H. Exploration of the role of immune cells and cell therapy in hepatocellular carcinoma. Front Immunol 2025; 16:1569150. [PMID: 40308592 PMCID: PMC12040661 DOI: 10.3389/fimmu.2025.1569150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Hepatocellular carcinoma stands as one of the foremost contributors to cancer-associated fatalities globally, and the limitations of traditional treatment methods have prompted researchers to explore new therapeutic options. Recently, cell therapy has emerged as a promising approach for HCC, showing significant potential in improving patient outcomes. This review article explores the use of cell therapy for HCC, covering different types, the mechanisms behind their effectiveness, recent advancements in clinical trials, and ongoing challenges. This article aims to provide insightful perspectives for future research and clinical applications in treating HCC by synthesizing current knowledge.
Collapse
Affiliation(s)
- Tao Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cong Ren
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhanyu Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ning Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Haowen Tang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
3
|
Zhao Q, Dong G, Zhang X, Gao X, Li H, Guo Z, Gong L, Yang H. Unraveling the mechanism of core prescription in primary liver cancer: integrative analysis through data mining, network pharmacology, and molecular simulation. In Silico Pharmacol 2025; 13:63. [PMID: 40255256 PMCID: PMC12003234 DOI: 10.1007/s40203-025-00352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
This study aims to identify core Traditional Chinese Medicine compound prescriptions (TCM CPs) for Primary Liver Cancer (PLC) and their underlying mechanisms. A comprehensive search was conducted using China National Knowledge Infrastructure (CNKI) and the Chinese Medical Code V5.0, identifying 151 TCM CPs. Medication frequency and association rules were analyzed with TCMICS V3.0, while active compounds were identified via TCMSP and TCMIP V2.0. Targets were predicted using Swiss Target Prediction, and disease targets from DisGeNET, OMIM, and GeneCards were cross-referenced. A protein-protein interaction (PPI) network was constructed, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using DAVID. In the process of studying active compounds, an orthogonal experiment was carried out on the extraction process of relevant herbs. The results of the orthogonal experiment and range analysis showed that for the extraction rate of the extract and the content of paeoniflorin, the decoction cycles had the most significant impact, followed by soaking time and water volume. The optimal extraction conditions were determined as soaking time of 30 min, water volume of tenfold, and 3 decoction cycles. Under these conditions, the extract yield reached 42.49%, and the paeoniflorin content was 73.60 mg/25.02 g crude herb (equivalent to 2.94 mg/g). ANOVA analysis further confirmed the significance of these factors. The results revealed 109 common targets between TCM component targets and disease targets, with key targets including STAT3, SRC, AKT1, HRAS, and PIK3CA. Molecular docking showed strong binding affinities of paeoniflorin and 3,5,6,7-tetramethoxy-2-(3,4,5-trimethoxyphenyl) chromone to PLC targets, with ADME predictions favoring paeoniflorin. Furthermore, Molecular Dynamics (MD) simulations revealed that paeoniflorin maintains stable binding to the target proteins, demonstrating promising conformational stability. The CCK-8 assay demonstrated that the core TCM CP exerted a dose-dependent inhibitory effect on HepG2 cells. After 24 h of intervention, the IC50 values of paeoniflorin and the TCM CP on HepG2 cells were 17.58 μg/mL and 120.5 μg/mL, respectively, which confirmed their anti-proliferative activity against PLC. This study identifies key active compounds and investigates their roles in modulating the Ras/Raf/MEK/ERK, AKT/NF-κB, and JAK-STAT signaling pathways, offering valuable insights into the therapeutic potential of TCM for PLC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00352-2.
Collapse
Affiliation(s)
- Qingsi Zhao
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Gaoyue Dong
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Xinyue Zhang
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Xing Gao
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Hongyu Li
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| | - Zhongyuan Guo
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046 Henan China
- Institue of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Leilei Gong
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026 China
| | - Hong Yang
- Yanjing Medical College, Capital Medical University, Beijing, 101300 China
| |
Collapse
|
4
|
Liu F, Chen H, Wu S, Zhu C, Zhang M, Rui W, Zhou D, Wang Y, Lin X, Zhao X, Ye Y. Neoepitope BTLA P267L-specific TCR-T cell immunotherapy unlocks precision treatment for hepatocellular carcinoma. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0434. [PMID: 40205806 PMCID: PMC12032833 DOI: 10.20892/j.issn.2095-3941.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVE The high heterogeneity of hepatocellular carcinoma (HCC) renders traditional therapies unable to effectively activate the patient's immune system to combat tumors. Patients with advanced HCC and T cell functional deficiencies may benefit more from cellular immunotherapy, especially tumor neoepitope-targeted T cell receptor (TCR)-T cells. Neoepitopes with strong immunogenicity provide precise targets for HCC, further enhancing the efficacy of cellular immunotherapy. METHODS A scalable workflow for identifying neoepitopes from 7 HLA-A*02:01-restricted patients with HCC was established based on whole exome sequencing and bioinformatics analyses, followed by identification of neoepitope-specific TCRs through tetramer-based screening and single-cell TCR cloning technology, which were further validated in the JC4 cell model. The cytotoxicity of CD8+ TCR-T cells was evaluated in neoepitope-positive tumor cell lines or NCG mice. RESULTS Ten specific neoepitopes were identified, among which neoepitope B and T lymphocyte attenuatorP267L [BTLAP267L (SLNHSVIGL)] exhibited advantageous properties as a potential tumor target. Three TCRs (85-3, 126-5, and 52-3) were confirmed to specifically recognize the neoepitope BTLAP267L, while no cross-recognition of irrelevant or wild-type epitopes was observed. Activated BTLAP267L-specific CD8+ TCR-T cells released extensive perforin, granzyme B, IFN-γ, and TNF-α in vitro, thereby inducing strong cytotoxic effects against BTLAP267L-positive T2 or HCC cell lines. BTLAP267L-specific CD8+ TCR-T cells mediated robust tumor regression due to long-lasting survival and released perforin without causing significant cytotoxic effects on normal organs in murine experiments. CONCLUSIONS This preclinical study demonstrated the beneficial effects of neoepitope BTLAP267L-specific TCR-T cell immunotherapy, unlocking a novel strategy for personalized precision therapy in HCC.
Collapse
Affiliation(s)
- Fang Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Hua Chen
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Suxin Wu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Chenlu Zhu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Mingji Zhang
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
- The Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Wei Rui
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Zhou
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
- The Department of Hepatopancreatobiliary Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yang Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| | - Xin Lin
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqiang Zhao
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, China
| |
Collapse
|
5
|
Deng Y, Chen Z, He Q, Wu B, Su T, Mao C, Hu R. Clinical value of systemic immunoinflammatory index in predicting recurrence and metastasis in patients with primary liver cancer. BMC Gastroenterol 2025; 25:169. [PMID: 40082749 PMCID: PMC11908081 DOI: 10.1186/s12876-025-03749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Primary liver cancer is a highly aggressive neoplasm with high incidence and mortality. Due to the high ability to metastasis, the 5-year survival rate of patients with primary liver cancer is poor. AIM To investigate the clinical value of systemic immunoinflammatory index (SII) in predicting recurrence and metastasis after interventional therapy in patients with primary liver cancer. METHODS Total 186 patients with primary liver cancer were included and underwent Transcatheter arterial chemoembolization (TACE), and followed up for 3 years. Then, patients were divided into 110 cases in the recurrent metastasis group and 76 cases in the non-recurrent metastasis group according to presence or absence of recurrence and metastasis. Baseline data, SII and alpha-fetoprotein (AFP) levels were compared. Cox proportional hazards regression analysis was used to analyze factors affecting recurrence and metastasis. ROC curve was used to analyze SII and AFP levels in predicting recurrence and metastasis after interventional therapy in patients. Kaplan-Meier survival curves were used to evaluate the survival of patients. RESULTS The SII index and AFP levels in the recurrence and metastasis group were higher than those in the non-recurrence and metastasis group (P < 0.001). Cox proportional hazards regression analysis confirmed tumor size ≥ 5 cm, presence of vascular tumor thrombus, presence of vascular invasion, no tumor capsule, SII index, AFP Levels were closely related to the recurrence and metastasis of patients with primary liver cancer (P < 0.05). ROC curve analysis showed that AUC of SII and AFP predicted recurrence and metastasis after intervention were 0.797 and 0.839, respectively, and the jointed AUC was 0.910. After a 3-years of follow-up, the overall survival rate of the 186 patients was 45.70% (85/186). Kaplan-Meier survival curve analysis showed that patients with high SII levels had shorter survival time than that of patients with low SII levels (P < 0.05). CONCLUSION Preoperative SII was closely associated with early recurrence and metastasis, and combined with AFP may have higher value in predicting recurrence and metastasis after interventional therapy in patients with primary liver cancer.
Collapse
Affiliation(s)
- Yang Deng
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Zhili Chen
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Qiufeng He
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China.
| | - Bei Wu
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Ting Su
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Chuangjie Mao
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Rong Hu
- Department of Hepatology, Public Health Clinical Center of Chengdu, No. 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| |
Collapse
|
6
|
Misawa K, Bhat H, Adusumilli PS, Hou Z. Combinational CAR T-cell therapy for solid tumors: Requisites, rationales, and trials. Pharmacol Ther 2025; 266:108763. [PMID: 39617146 PMCID: PMC11848936 DOI: 10.1016/j.pharmthera.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved potent antitumor efficacy in hematological malignancies; however, because of limitations in CAR T-cell recruitment, infiltration, activation, and functional persistence in the tumor, its efficacy in solid tumors has been suboptimal. To overcome these challenges, combinational strategies that include chemotherapy, radiation therapy, or immune checkpoint inhibitor agent therapy with CAR T-cell therapy are being investigated. The established functional characteristics of the abovementioned therapies provide a rationale for the use of a combinational approach with CAR T cells. Chemotherapy reshapes the peritumoral stroma, decreases the immunosuppressive cell population, and promotes a proinflammatory milieu, all of which allow for increased recruitment, infiltration, and accumulation of CAR T cells. Radiation therapy promotes a chemokine gradient, which augments tumor infiltration by CAR T cells and further increases expression of tumor-associated antigens, allowing for increased activation of CAR T cells. Immune checkpoint inhibitor agent therapy inactivates T-cell exhaustion pathways-most notably, the PD1/PDL1 pathway-thereby improving the functional persistence of CAR T cells and promoting endogenous immunity. In this review, we discuss the requisites and rationales for combinational therapy, and we review 25 ongoing phase I and II clinical trials, of which 4 use chemotherapy, 3 use radiation therapy, 11 use immunotherapy, and 7 use another agent. While safety, efficacy, and improved outcomes are the primary goals of these ongoing studies, the knowledge gained from them will help pave the way for subsequent studies focused on optimizing combinational regimens and identifying predictive biomarkers.
Collapse
Affiliation(s)
- Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Hina Bhat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Wu X, Jin B, Liu X, Mao Y, Wan X, Du S. Research trends of cellular immunotherapy for primary liver cancer: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2426869. [PMID: 39538378 PMCID: PMC11572085 DOI: 10.1080/21645515.2024.2426869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Cellular immunotherapy has shown considerable potential for the treatment of primary liver cancer (PLC), particularly hepatocellular carcinoma (HCC), although it is in the early stages of development. This study used bibliometric methods to delineate the evolution of research on cellular immunotherapy for PLC. Data were sourced from the Web of Science Core Collection (WoSCC) on April 22, 2024. Using the "Bibliometrix" R package, we examined primary bibliometric features, collaboration frequency between countries, and article output of the journals. Furthermore, we employed VOSviewer for coauthorship analysis and visualization and CiteSpace to assess keyword co-occurrence, as well as to spotlight keywords and references with the strongest citation bursts. Our analysis encompassed 492 publications focused on PLC and cellular immunotherapy, and we pinpointed China, Japan, and the USA as the foremost contributing nations and identified "Cancer Immunology Immunotherapy" as the journal with the most contributions in this area. Sun Yat-sen University emerged as the institution with the most significant output, and Li Zonghai authored the greatest number of leading articles. Prominent keywords that displayed a notable citation burst in the later years included "chimeric antigen receptor," "combination therapy", "CAR-T cells," "TCR-T cells," and "liver transplantation." This bibliometric study outlined a foundational knowledge framework, surveyed over three decades of research on cellular immunotherapy for PLC, and revealed the key players and trends, thereby offering a thorough understanding of the field, especially in relation to HCC.
Collapse
Affiliation(s)
- Xiang’an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
9
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Zhang J, Wang L, Zhang S, Cao R, Zhao Y, Zhao Y, Song Y, Guo Z. Alpha-fetoprotein predicts the treatment efficacy of immune checkpoint inhibitors for gastric cancer patients. BMC Cancer 2024; 24:266. [PMID: 38408930 PMCID: PMC10895833 DOI: 10.1186/s12885-024-11999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are commonly used in conjunction with chemotherapy to improve treatment outcomes for patients with gastric cancer. Since AFP could influence immunity by both inhibiting natural killer (NK) cells and regulating negatively the function of dendritic cells, we evaluated the influence of baseline serum alpha-fetoprotein (AFP) levels on the curative effect of ICIs in advanced gastric cancer (AGC) patients. METHODS A retrospective analysis was conducted on 158 AGC patients who underwent ICI treatment. The patients were divided into high and low groups based on the AFP threshold of 20 ng/ml. The efficacy of ICI treatment was assessed using objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS The higher levels of baseline AFP were found to be associated with a decrease in the effectiveness of ICIs, as evidenced by a DCR of 50.0% in the group with high AFP levels compared to 87.7% in the group with low AFP levels (P < 0.001). Further analysis using Kaplan-Meier survival techniques indicated that a high AFP level was linked to shorter progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.001) in AGC individuals receiving ICIs. After propensity score matching, a log rank test revealed that the high AFP group had a decrease in median PFS (P = 0.011) and median OS (P = 0.036) compared to the low AFP group. The high AFP levels also showed its association with shorter PFS and OS in the subgroup analysis of ICI plus chemotherapy patients. CONCLUSIONS Baseline AFP levels may predict immune checkpoint inhibitor treatment efficacy in AGC patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Lei Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, Hebei, P.R. China
| | - Shasha Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Ruijie Cao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yue Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yanrong Song
- Department of Medical Technology, Xingtai Medical College, 054000, Xingtai, Hebei, P.R. China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China.
| |
Collapse
|
11
|
Zhou J, Liu J, Li T, Zhong Q, Yu H. Combined RNAi of CTTN and FGF2 Modulates Cell Migration, Invasion and G1/S Transition of Hepatocellular Carcinoma through Ras/ERK Signaling Pathway. Curr Cancer Drug Targets 2024; 24:791-803. [PMID: 38031266 DOI: 10.2174/0115680096254722231025110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Most patients with hepatocellular carcinoma (HCC) die of rapid progression and distant metastasis. Gene therapy represents a promising choice for HCC treatment, but the effective targeted methods are still limited. OBJECTIVES CTTN/cortactin plays a key role in actin polymerization and regulates cytoskeleton remodeling. However, the interaction network of CTTN in HCC is not well understood. METHODS siRNA was designed for CTTN silencing and Affymetrix GeneChip sequencing was used to obtain the gene profile after CTTN knockdown in the HCC cell line SMMC-7721. Potential interacting genes of CTTN were identified using qRT-PCR. The inhibition on HCC by combined RNA interference (RNAi) of CTTN and fibroblast growth factor 2 (FGF2) was detected. RESULTS A total of 1,717 significantly altered genes were screened out and 12 potential interacting genes of CTTN were identified. The interaction of CTTN and FGF2 was validated and combined RNAi of CTTN and FGF2 achieved a synergistic effect, leading to better inhibition of HCC cell migration, invasion and G1/S transition than single knockdown of CTTN or FGF2. Mechanistically, combined RNAi of CTTN and FGF2 modulated the Ras/ERK signaling pathway. In addition, the EMT epithelial marker E-cadherin was upregulated while the mesenchymal marker Vimentin and cell cycle protein Cyclin D1 were downregulated after combined RNAi of CTTN and FGF2. Additionally, qRT-PCR and immunohistochemical staining showed that both CTTN and FGF2 were highly expressed in metastatic HCC tissues. CONCLUSION Combined RNAi of CTTN and FGF2 may be a novel and promising intervention strategy for HCC invasion and metastasis.
Collapse
Affiliation(s)
- Jiaming Zhou
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiaxuan Liu
- Department of Pathology, Shanghai Chest Hospital, Shanghai, 200003, China
| | - Tiejun Li
- Department of Pathology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qiang Zhong
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Hongyu Yu
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
12
|
Cui Y, Luo M, Gu C, He Y, Yao Y, Li P. CAR designs for solid tumors: overcoming hurdles and paving the way for effective immunotherapy. BIOPHYSICS REPORTS 2023; 9:279-297. [PMID: 38516299 PMCID: PMC10951476 DOI: 10.52601/bpr.2023.230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 03/23/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized immunotherapy by modifying patients' immune cells genetically. By expressing CARs, these modified cells can specifically identify and eliminate tumor cells. The success of CAR-T therapy in hematological malignancies, such as leukemia and lymphoma, has been remarkable. Numerous studies have reported improved patient outcomes and increased survival rates. However, the application of CAR-T therapy in treating solid tumors faces significant challenges. Solid tumors possess complex microenvironments containing stromal cells, extracellular matrix components, and blood vessels. These factors can impede the infiltration and persistence of CAR-T cells within the tumor. Additionally, the lack of target antigens exclusively expressed on tumor cells raises concerns about off-target effects and potential toxicity. This review aims to discuss advancements achieved by CAR-T therapy in solid tumors and the clinical outcomes in the realm of solid tumors.
Collapse
Affiliation(s)
- Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuanyuan Gu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuxian He
- University of California San Diego, La Jolla, CA 92093-0021, USA
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|