1
|
Faircloth TU, Temple S, Parr R, Soma A, Massoumi H, Jalilian E, Djalilian AR, Hematti P, Rajan D, Chinnadurai R. Human cornea-derived mesenchymal stromal cells inhibit T cells through indoleamine 2,3 dioxygenase. Cytotherapy 2025:S1465-3249(25)00032-5. [PMID: 39891632 DOI: 10.1016/j.jcyt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Defining the mechanism of immune modulation by mesenchymal stromal cells (MSCs) from distinct anatomical tissues is of great translational interest. The human cornea is an immunologically privileged organ, and the mechanism of immunoregulation of cornea-derived MSCs (cMSCs) is currently unknown. We investigated cMSCs derived from the corneas of 5 independent human donorS for their fitness and mechanism of action in suppressing T cells. cMSCs display the immunophenotype CD45-CD73+CD105+CD90+CD44+ and robust in vitro growth. 30-plex secretome analysis identified that cMSCs innately secrete specific molecules in a dose-dependent manner. cMSCs do not express or upregulate costimulatory but do upregulate coinhibitory molecules upon stimulation with interferon γ (IFNγ). cMSCs inhibit T-cell proliferation in contact-dependent co-cultures, which can be predicted by a unique secretome signature. In addition, co-culturing in a 2-chamber transwell system has demonstrated that cMSCs also inhibit T-cell proliferation in a non-contact-dependent manner. Mechanistic analysis has demonstrated that activated T cells effectively induce indoleamine 2,3-dioxygenase (IDO) but not other enzymes of the tryptophan metabolic pathway in cMSCs. Silencing of IDO in cMSCs reduces their fitness to suppress T cells. These results provide evidence that in cMSCs, one of the principal mechanisms of immunosuppression on T cells is through IDO. These results suggest that MSCs derived from the human cornea display immunoregulatory properties and, thus, may play a role in maintaining the immune-privileged niche of the cornea.
Collapse
Affiliation(s)
- Tyler U Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Sara Temple
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Rhett Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Alyssa Soma
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia, USA.
| |
Collapse
|
3
|
Silva-Sousa T, Usuda JN, Al-Arawe N, Frias F, Hinterseher I, Catar R, Luecht C, Riesner K, Hackel A, Schimke LF, Dias HD, Filgueiras IS, Nakaya HI, Camara NOS, Fischer S, Riemekasten G, Ringdén O, Penack O, Winkler T, Duda G, Fonseca DLM, Cabral-Marques O, Moll G. The global evolution and impact of systems biology and artificial intelligence in stem cell research and therapeutics development: a scoping review. Stem Cells 2024; 42:929-944. [PMID: 39230167 DOI: 10.1093/stmcls/sxae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8 to 10-fold increase in research output related to all 3 search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the (US, n = 1487), (UK, n = 1094), Germany (n = 355), The Netherlands (n = 339), Russia (n = 215), and France (n = 149), while for AI-related research the US (n = 853) and UK (n = 258) take a strong lead, followed by Switzerland (n = 69), The Netherlands (n = 37), and Germany (n = 19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection among AI, SysBio, and SC research over the past 2 decades, with substantial growth in all 3 fields and exponential increases in AI-related research in the past decade.
Collapse
Affiliation(s)
- Thayna Silva-Sousa
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
| | - Júlia Nakanishi Usuda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
| | - Nada Al-Arawe
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Hematology, Oncology, and Tumorimmunology, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Francisca Frias
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, 16816 Neuruppin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburgischen Technischen Universität Cottbus-Senftenberg, 14476 Potsdam, Germany
- Vascular Surgery, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Christian Luecht
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Katarina Riesner
- Department of Hematology, Oncology, and Tumorimmunology, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Alexander Hackel
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Schleswig Holstein Campus Lübeck, 23538 Lübeck, Germany
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, USP, SP, Brazil
| | - Haroldo Dutra Dias
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), USP, SP, Brazil
| | | | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, USP School of Medicine (USPM), São Paulo (SP), Brazil
| | - Niels Olsen Saraiva Camara
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
| | - Stefan Fischer
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Schleswig Holstein Campus Lübeck, 23538 Lübeck, Germany
| | - Gabriela Riemekasten
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Schleswig Holstein Campus Lübeck, 23538 Lübeck, Germany
| | - Olle Ringdén
- Division of Pediatrics, Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Penack
- Department of Hematology, Oncology, and Tumorimmunology, Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Tobias Winkler
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Georg Duda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
| | - Dennyson Leandro M Fonseca
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), USP, SP, Brazil
| | - Otávio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo (SP), Brazil
- Department of Immunology, Institute of Biomedical Sciences, USP, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), USP, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, USP School of Medicine (USPM), São Paulo (SP), Brazil
- D'OR Institute Research and Education, SP, Brazil
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätzsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
- Julius Wolff Institute (JWI), Charité Universitätzsmedizin, 10117 Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätzsmedizin, 10117 Berlin, Germany
| |
Collapse
|
4
|
Gryguc A, Maciulaitis J, Mickevicius L, Laurinavicius A, Sutkeviciene N, Grigaleviciute R, Zigmantaite V, Maciulaitis R, Bumblyte IA. Prevention of Transition from Acute Kidney Injury to Chronic Kidney Disease Using Clinical-Grade Perinatal Stem Cells in Non-Clinical Study. Int J Mol Sci 2024; 25:9647. [PMID: 39273595 PMCID: PMC11394957 DOI: 10.3390/ijms25179647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Acute kidney injury (AKI) is widely recognized as a precursor to the onset or rapid progression of chronic kidney disease (CKD). However, there is currently no effective treatment available for AKI, underscoring the urgent need for the development of new strategies to improve kidney function. Human placental mesenchymal stromal cells (hpMSCs) were isolated from donor placentas, cultured, and characterized with regard to yield, viability, flow cytometry, and potency. To mimic AKI and its progression to CKD in a rat model, a dedicated sensitive non-clinical bilateral kidney ischemia-reperfusion injury (IRI) model was utilized. The experimental group received 3 × 105 hpMSCs into each kidney, while the control group received IRI and saline and the untreated group received IRI only. Urine, serum, and kidney tissue samples were collected over a period of 28 days. The hpMSCs exhibited consistent yields, viability, and expression of mesenchymal lineage markers, and were also shown to suppress T cell proliferation in a dose-dependent manner. To ensure optimal donor selection, manufacturing optimization, and rigorous quality control, the rigorous Good Manufacturing Practice (GMP) conditions were utilized. The results indicated that hpMSCs increased rat survival rates and improved kidney function by decreasing serum creatinine, urea, potassium, and fractionated potassium levels. Furthermore, the study demonstrated that hpMSCs can prevent the initial stages of kidney structural fibrosis and improve kidney function in the early stages by mitigating late interstitial fibrosis and tubular atrophy. Additionally, a robust manufacturing process with consistent technical parameters was established.
Collapse
Affiliation(s)
- Agne Gryguc
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Hospital of Lithuanian University of Health Science, 50161 Kaunas, Lithuania
| | - Justinas Maciulaitis
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lukas Mickevicius
- Department of Urology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Arvydas Laurinavicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Neringa Sutkeviciene
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vilma Zigmantaite
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Romaldas Maciulaitis
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Inga Arune Bumblyte
- Department of Nephrology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Hospital of Lithuanian University of Health Science, 50161 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
5
|
Valiukevičius P, Mačiulaitis J, Pangonytė D, Siratavičiūtė V, Kluszczyńska K, Kuzaitytė U, Insodaitė R, Čiapienė I, Grigalevičiūtė R, Zigmantaitė V, Vitkauskienė A, Mačiulaitis R. Human Placental Mesenchymal Stem Cells and Derived Extracellular Vesicles Ameliorate Lung Injury in Acute Respiratory Distress Syndrome Murine Model. Cells 2023; 12:2729. [PMID: 38067158 PMCID: PMC10706384 DOI: 10.3390/cells12232729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigates the therapeutic potential of human placental mesenchymal stem cells (P-MSCs) and their extracellular vesicles (EVs) in a murine model of acute respiratory distress syndrome (ARDS), a condition with growing relevance due to its association with severe COVID-19. We induced ARDS-like lung injury in mice using intranasal LPS instillation and evaluated histological changes, neutrophil accumulation via immunohistochemistry, bronchoalveolar lavage fluid cell count, total protein, and cytokine concentration, as well as lung gene expression changes at three time points: 24, 72, and 168 h. We found that both P-MSCs and EV treatments reduced the histological evidence of lung injury, decreased neutrophil infiltration, and improved alveolar barrier integrity. Analyses of cytokines and gene expression revealed that both treatments accelerated inflammation resolution in lung tissue. Biodistribution studies indicated negligible cell engraftment, suggesting that intraperitoneal P-MSC therapy functions mostly through soluble factors. Overall, both P-MSC and EV therapy ameliorated LPS-induced lung injury. Notably, at the tested dose, EV therapy was more effective than P-MSCs in reducing most aspects of lung injury.
Collapse
Affiliation(s)
- Paulius Valiukevičius
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Justinas Mačiulaitis
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (J.M.); (R.I.); (R.M.)
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.P.); (V.S.)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.P.); (V.S.)
| | - Vitalija Siratavičiūtė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.P.); (V.S.)
| | - Katarzyna Kluszczyńska
- Department of Molecular Biology of Cancer, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ugnė Kuzaitytė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Rūta Insodaitė
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (J.M.); (R.I.); (R.M.)
| | - Ieva Čiapienė
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.G.); (V.Z.)
| | - Vilma Zigmantaitė
- Biological Research Center, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.G.); (V.Z.)
| | - Astra Vitkauskienė
- Department of Laboratory Medicine, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Romaldas Mačiulaitis
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (J.M.); (R.I.); (R.M.)
| |
Collapse
|