1
|
Pizzimenti C, Curcio A, Fiorentino V, Germanò A, Martini M, Ieni A, Tuccari G. Immunoexpression of autophagy‑related proteins in a single‑center series of sporadic adult conventional clival chordomas. Oncol Lett 2025; 29:32. [PMID: 39512506 PMCID: PMC11542148 DOI: 10.3892/ol.2024.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
Autophagy is a biological process that facilitates the degradation and removal of damaged structures and macromolecules. In neoplasms, autophagy has been proposed to play a dual role, functioning either as a tumor promoter or a tumor suppressor. To date, no comprehensive analysis of autophagy, primarily through immunohistochemical investigation of autophagy-related proteins (ATGs), has been conducted in chordomas (CHs), which are rare bone tumors that arise from remnants of the notochord. The present study aimed to investigate the immunoexpression of several ATGs, including microtubule-associated protein 1 light chain 3 (LC3A/B), Sequestosome-1 (p62) and autophagy and Beclin 1 regulator 1 (AMBRA-1) in a series of sporadic adult conventional clival CHs collected from a single neuropathological center in southern Italy. Immunohistochemical analysis revealed that LC3A/B, p62 and AMBRA-1 were exclusively found in neoplastic cells, with no expression detected in the surrounding stromal cells. Both LC3A/B and p62 were expressed in the cytoplasm and nucleus of neoplastic cells, while AMBRA-1 was predominantly localized in the cytoplasm. In all cases of CHs, p62 was consistently and highly expressed, whereas a similarly high expression of LC3A/B was observed in five cases, four of which were characterized by neoplastic recurrence and partial resection. Low immunoreactivity was noted in seven out of 10 cases (70%), while three recurrent cases exhibited high levels of AMBRA-1 immunostaining. Statistical analysis using Fisher's exact test revealed significant P-values for LC3A/B (P=0.048), AMBRA-1 (P=0.033), Ki-67 (P=0.048) and surgical treatment (P=0.048). Consequently, a negative prognostic role for these two ATGs may be hypothesized in the development of CHs.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonello Curcio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, I-98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonino Germanò
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, I-98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’ Section of Pathology, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
2
|
Hamza FN, Mohammad KS. Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments. Pharmaceuticals (Basel) 2024; 17:1591. [PMID: 39770433 PMCID: PMC11679356 DOI: 10.3390/ph17121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases. Even though immune checkpoint inhibitors (ICIs) have significantly changed cancer treatment, their impact on bone metastases appears limited because of the bone microenvironment's immunosuppressive traits, which include high levels of transforming growth factor-beta (TGFβ) and the immune-suppressing cells, such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). This review underscores the investigation of combined therapeutic approaches that might ease these difficulties, such as the synergy of immune checkpoint inhibitors with agents aimed at bones (denosumab, bisphosphonates), chemotherapy, and radiotherapy, as well as the combination of immune checkpoint inhibitors with different immunotherapeutic methods, including CAR T-cell therapy. This review provides a comprehensive analysis of preclinical studies and clinical trials that show the synergistic potential of these combination approaches, which aim to both enhance immune responses and mitigate bone destruction. By offering an in-depth exploration of how these strategies can be tailored to the bone microenvironment, this review underscores the need for personalized treatment approaches. The findings emphasize the urgent need for further research into overcoming immune evasion in bone metastases, with the goal of improving patient survival and quality of life.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- Department of Biochemistry, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Khalid Said Mohammad
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
3
|
Agner KE, Larkins MC. Comparative overall survival analysis of chordomas of the base of the skull from the Surveillance, Epidemiology, and End Results (SEER) program between 2000 and 2020. Neurosurg Rev 2024; 47:683. [PMID: 39320522 PMCID: PMC11424729 DOI: 10.1007/s10143-024-02815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
Chordomas of the skull base are rare, slow growing, locally invasive cancers with limited long-term survival analysis reported in the literature. We seek to provide comparative survival analysis of patients on a long-term (20-year) basis using population-level data. The Surveillance, Epidemiology, and End Results (SEER) program was queried for cases of chordoma relegated to the base of the skull, diagnosed between 2000 and 2020. Demographic, disease, and treatment information were analyzed using Cox proportional hazards and log-rank comparisons. 630 patients with chordoma of the skull base were identified. Age ≤ 49 years at diagnosis was associated with increased five-, 10-, and 20-year overall survival (hazard ratio (HR) = 0.39, 0.33, and 0.30, respectively; p < 0.001 for all). Treatment with surgery and adjuvant radiotherapy was associated with increased five-, 10-, and 20-year survival (HR = 0.71, 0.79, and 0.79, respectively; p < 0.001 for all). On univariate analysis, widowed patients had decreased survival (20-year overall survival = 34.8% [15.3%-34.8%] compared to married patients (74.4% [68.1%-80.8%]. Surgery remains the primary treatment associated with increased survival among patients with chordoma of the skull base, with adjuvant radiotherapy serving a complimentary role. Demographic factors such as marital status are also associated with changes in survival.
Collapse
Affiliation(s)
- Kevin E Agner
- The Ohio State University College of Medicine, 370 W. 9Th Avenue, Columbus, OH, 43210, USA
| | - Michael C Larkins
- East Carolina University Brody School of Medicine, 600 Moye Blvd, Greenville, NC, 27834, USA.
- Department of Emergency Medicine, Boonshoft School of Medicine at Wright State University, 2555 University Blvd, Fairborn, OH, USA.
| |
Collapse
|
4
|
Golding R, Abuqubo R, Pansa CJ, Bhatta M, Shankar V, Mani K, Kleinbart E, Gelfand Y, Murthy S, De la Garza Ramos R, Krystal J, Eleswarapu A, Yassari R, Mostafa E, Fourman MS, Schlumprecht A. Immunologic and Targeted Molecular Therapies for Chordomas: A Narrative Review. J Clin Med 2024; 13:5679. [PMID: 39407739 PMCID: PMC11476405 DOI: 10.3390/jcm13195679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Chordomas are rare sarcomas arising from notochordal tissue and occur most commonly in the spine. The standard of care for chordomas without evidence of metastatic disease generally consists of en bloc resection followed by adjuvant radiotherapy. However, long-term (20-year) survival rates are approximately 30%. Chordomas are generally considered as chemo resistant. Therefore, systemic therapies have rarely been employed. Novel immunotherapies, including antibody therapy and tumor vaccines, have shown promise in early trials, leading to extended progression-free survival and symptom relief. However, the outcomes of larger trials using these vectors are heterogeneous. The aim of this review is to summarize novel chordoma treatments in immune-targeted therapies. The current merits, trial outcomes, and toxicities of these novel immune and targeted therapies, including those targeting vascular endothelial growth factor receptor (VEGFR) targets and the epidermal growth factor receptor (EGFR), will be discussed.
Collapse
Affiliation(s)
- Regina Golding
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Rami Abuqubo
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Christopher J. Pansa
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Manish Bhatta
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Vishal Shankar
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Kyle Mani
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Emily Kleinbart
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.A.); (C.J.P.); (M.B.); (V.S.); (K.M.); (E.K.)
| | - Yaroslav Gelfand
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Saikiran Murthy
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Rafael De la Garza Ramos
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Jonathan Krystal
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Ananth Eleswarapu
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Reza Yassari
- Department of Neurological Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (Y.G.); (S.M.); (R.D.l.G.R.); (R.Y.)
| | - Evan Mostafa
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Mitchell S. Fourman
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| | - Anne Schlumprecht
- Department of Orthopaedic Surgery, Montefiore Einstein, Bronx, NY 10461, USA; (R.G.); (J.K.); (A.E.); (E.M.); (A.S.)
| |
Collapse
|
5
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
6
|
Regmi M, Wang Y, Liu W, Dai Y, Liu S, Ma K, Lin G, Yang J, Liu H, Wu J, Yang C. From glioma gloom to immune bloom: unveiling novel immunotherapeutic paradigms-a review. J Exp Clin Cancer Res 2024; 43:47. [PMID: 38342925 PMCID: PMC10860318 DOI: 10.1186/s13046-024-02973-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024] Open
Abstract
In tumor therapeutics, the transition from conventional cytotoxic drugs to targeted molecular therapies, such as those targeting receptor tyrosine kinases, has been pivotal. Despite this progress, the clinical outcomes have remained modest, with glioblastoma patients' median survival stagnating at less than 15 months. This underscores the urgent need for more specialized treatment strategies. Our review delves into the progression toward immunomodulation in glioma treatment. We dissect critical discoveries in immunotherapy, such as spotlighting the instrumental role of tumor-associated macrophages, which account for approximately half of the immune cells in the glioma microenvironment, and myeloid-derived suppressor cells. The complex interplay between tumor cells and the immune microenvironment has been explored, revealing novel therapeutic targets. The uniqueness of our review is its exhaustive approach, synthesizing current research to elucidate the intricate roles of various molecules and receptors within the glioma microenvironment. This comprehensive synthesis not only maps the current landscape but also provides a blueprint for refining immunotherapy for glioma, signifying a paradigm shift toward leveraging immune mechanisms for improved patient prognosis.
Collapse
Affiliation(s)
- Moksada Regmi
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
| | - Yingjie Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Weihai Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Yuwei Dai
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Shikun Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Ke Ma
- Peking University Health Science Center, Beijing, 100191, China
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Hongyi Liu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China
| | - Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
- National Engineering Research Center for Ophthalmology, Beijing, 100730, China.
- Engineering Research Center of Ophthalmic Equipment and Materials, Ministry of Education, Beijing, 100730, China.
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100730, China.
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China.
- Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, 450003, China.
| |
Collapse
|