1
|
Vahkal B, Altosaar I, Ariana A, Jabbour J, Pantieras F, Daniel R, Tremblay É, Sad S, Beaulieu JF, Côté M, Ferretti E. Human milk extracellular vesicles modulate inflammation and cell survival in intestinal and immune cells. Pediatr Res 2024:10.1038/s41390-024-03757-5. [PMID: 39609615 DOI: 10.1038/s41390-024-03757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
Human milk contains extracellular vesicles (EVs) that carry bioactive molecules such as microRNA, to the newborn intestine. The downstream effects of EV cargo on signaling and immune modulation may shield neonates against inflammatory diseases, including necrotizing enterocolitis. Premature infants are especially at risk, while human milk-feeding may offer protection. The effect of gestational-age specific term and preterm EVs from transitional human milk was characterized on human intestinal epithelial cells (HIECs and Caco-2), primary macrophages, and THP-1 monocytes. We hypothesized that term and preterm EVs differentially influence immune-related cytokines and cell death. We found that preterm EVs were enriched in CD14 surface marker, while both term and preterm EVs increased epidermal growth factor secretion. Following inflammatory stimuli, only term EVs inhibited secretion of IL-6 in HIECs, and reduced expression of pro-inflammatory cytokine IL-1β in macrophages. Term and preterm EVs inhibited secretion of IL-1β and reduced inflammasome related cell death. We proposed that human milk EVs regulate immune-related signaling via their conserved microRNA cargo, which could promote tolerance and a homeostatic immune response. These findings provide basis for further studies into potential therapeutic supplementation with EVs in vulnerable newborn populations by considering functional, gestational age-specific effects. IMPACT: This study reveals distinct functional differences between term and preterm transitional human milk extracellular vesicles (EVs) highlighting the importance of gestational age in their bioactivity. Term EVs uniquely inhibited IL-6 secretion, IL-1β expression, and apoptosis following inflammatory stimuli. Both term and preterm human milk EVs reduced IL-1β secretion and inflammasome-induced cell death. Conserved human milk extracellular vesicle microRNA cargo could be a mediator of the anti-inflammatory effects, particularly targeting cytokine production, the inflammasome, and programmed cell death. These findings underscore the importance of considering gestational age in future research exploring the therapeutic potential of human milk extracellular vesicles to prevent or treat intestinal inflammatory diseases in neonates.
Collapse
Affiliation(s)
- Brett Vahkal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Josie Jabbour
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Falia Pantieras
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Éric Tremblay
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Beaulieu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada.
| | - Emanuela Ferretti
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Shen L, Zhong X, Ji H, Yang S, Jin J, Lyu C, Ren Y, Xiao Y, Zhang Y, Fang S, Lin N, Tou J, Shu Q, Lai D. Macrophage α7nAChR alleviates the inflammation of neonatal necrotizing enterocolitis through mTOR/NLRP3/IL-1β pathway. Int Immunopharmacol 2024; 139:112590. [PMID: 38996778 DOI: 10.1016/j.intimp.2024.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Neonatal necrotizing enterocolitis (NEC) is one of the most prevalent and severe intestinal emergencies in newborns. The inflammatory activation of macrophages is associated with the intestinal injury of NEC. The neuroimmune regulation mediated by α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating macrophage activation and inflammation progression, but in NEC remains unclear. This study aims to explore the effect of macrophage α7nAChR on NEC. METHODS Mice NEC model were conducted with high-osmolarity formula feeding, hypoxia, and cold stimulation. The α7nAChR agonist PNU-282987 and mTOR inhibitor rapamycin were treated by intraperitoneal injections in mice. The expression and distribution of macrophages, α7nAChR, and phospho-mammalian target of rapamycin (p-mTOR) in the intestines of NEC patients and mice was assessed using immunohistochemistry, immunofluorescence, and flow cytometry. The expression of NLRP3, activated caspase-1 and IL-1β in mice intestines was detected by flow cytometry, western blot or ELISA. In vitro, the mouse RAW264.7 macrophage cell line was also cultured followed by various treatments. Expression of p-mTOR, NLRP3, activated caspase-1, and IL-1β in macrophages was determined. RESULTS Macrophages accumulated in the intestines and the expression of α7nAChR in the mucosal and submucosal layers of the intestines was increased in both the NEC patients and mice. The p-mTOR and CD68 were increased and co-localized in intestines of NEC patients. In vitro, α7nAChR agonist PNU-282987 significantly reduced the increase of NLRP3, activated caspase-1, and IL-1β in macrophages. PNU-282987 also significantly reduced the increase of p-mTOR. The effect was blocked by AMPK inhibitor compound C. The expression of NLRP3, activated caspase-1, and IL-1β was inhibited after mTOR inhibitor rapamycin treatment. In NEC model mice, PNU-282987 reduced the expression of p-mTOR, NLRP3, activated caspase-1, and IL-1β in the intestine. Meanwhile, rapamycin significantly attenuated NLRP3 activation and the release of IL-1β. Moreover, the proportion of intestinal macrophages and intestinal injury decreased after PNU-282987 treatment. CONCLUSION Macrophage α7nAChR activation mitigates NLRP3 inflammasome activation by modulating mTOR phosphorylation, and subsequently alleviates intestinal inflammation and injury in NEC.
Collapse
Affiliation(s)
- Leiting Shen
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Xiaohui Zhong
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Haosen Ji
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Sisi Yang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Jingyi Jin
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chengjie Lyu
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yichao Ren
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yi Xiao
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yuebai Zhang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Shu Fang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Nan Lin
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Jinfa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:728-738. [PMID: 38948093 PMCID: PMC11212546 DOI: 10.4252/wjsc.v16.i6.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Lu He
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Ning Li
- Department of Physical Education, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
4
|
Zhu L, He L, Duan W, Yang B, Li N. Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy. World J Stem Cells 2024; 16:727-737. [DOI: 10.4252/wjsc.v16.i6.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that affects premature infants. Although mounting evidence supports the therapeutic effect of exosomes on NEC, the underlying mechanisms remain unclear.
AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell (UCMSCs) exosomes, as well as their potential in alleviating NEC in neonatal mice.
METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide (LPS), after which the mice received human UCMSC exosomes (hUCMSC-exos). The control mice were allowed to breastfeed with their dams. Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting. Colon tissues were collected from NEC neonates and analyzed by immunofluorescence. Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.
RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC, resulting in reduced expression of tight junction proteins and an increased inflammatory response. The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy. We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.
CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment. These findings also enhance our understanding of the role of the autophagy mechanism in NEC, offering potential avenues for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Lu He
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong Province, China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, Hubei Province, China
| | - Ning Li
- Department of Physical Education, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
5
|
邓 智, 徐 凤, 何 晓, 李 宁. [Research progress on the relationship between anemia and neonatal necrotizing enterocolitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:646-651. [PMID: 38926383 PMCID: PMC11562064 DOI: 10.7499/j.issn.1008-8830.2312089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 06/28/2024]
Abstract
Neonatal necrotizing enterocolitis (NEC) is the most common inflammatory intestinal disease in preterm infants, with a high incidence and mortality rate. The etiology and mechanisms of NEC are not yet fully understood, and multiple factors contribute to its occurrence and development. Recent studies have found that anemia is a risk factor for NEC in neonates, but the specific pathogenic mechanism remains unclear. This article reviews recent research on the relationship between anemia and NEC, providing a reference for further understanding the impact of anemia on intestinal injury and its association with NEC.
Collapse
|
6
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|