1
|
Bolt P, Adamović I, Horaček M, Vuković Brinar I, Gulin T. From diagnosis to treatment of minimal change disease in pregnancy. CEN Case Rep 2025; 14:374-380. [PMID: 40325284 DOI: 10.1007/s13730-025-00996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Preeclampsia accounts for the majority of nephrotic syndrome in pregnancy. However, primary renal diseases, although not as common, can also be the cause. The authors report a case of a 33-year-old pregnant woman at 22 weeks of gestation who presented with significant proteinuria, hypoalbuminemia, hyperlipidemia and discrete pitting edema. After the initial workup, a kidney biopsy was performed to diagnose minimal change disease (MCD), which revealed extensive podocyte foot process effacement. Treatment with IV methylprednisolone followed by oral prednisone led to remission, but a relapse occurred at 37 weeks of gestation. Labor was induced due to oligohydramnios with fetal growth restriction and a female hypotrophic neonate was delivered. Later on, the neonate developed sepsis and was successfully treated. Postpartum, the mother acquired a steroid resistance, and tacrolimus was used to achieve complete remission. In this case report, we emphasize the importance of kidney biopsy in adequately diagnosing primary renal diseases, even in pregnancy. This greatly helps clinicians in choosing the appropriate therapy for the patient, leading to disease remission.
Collapse
Affiliation(s)
- Petra Bolt
- University of Zagreb School of Medicine, Šalata 2, 10000, Zagreb, Croatia.
| | - Iana Adamović
- University of Zagreb School of Medicine, Šalata 2, 10000, Zagreb, Croatia
| | - Matija Horaček
- University of Zagreb School of Medicine, Šalata 2, 10000, Zagreb, Croatia
| | - Ivana Vuković Brinar
- University of Zagreb School of Medicine, Šalata 2, 10000, Zagreb, Croatia
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Tonko Gulin
- University of Zagreb School of Medicine, Šalata 2, 10000, Zagreb, Croatia
- Department of Nephrology and Arterial Hypertension, University Hospital Centre Sisters of Charity, Vinogradska Cesta 29, 10000, Zagreb, Croatia
| |
Collapse
|
2
|
Wang X, Wang J, Zheng B, Tian R, Huang L, Mao W, Feng Y, Liu B, Xu P. Sanqi oral solution alleviates podocyte apoptosis in experimental membranous nephropathy by mediating EMT through the ERK/CK2-α/β-catenin pathway. Front Pharmacol 2025; 16:1503961. [PMID: 40417210 PMCID: PMC12098599 DOI: 10.3389/fphar.2025.1503961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Sanqi oral solution (SQ) is a Chinese medicine that has been used well to treat idiopathic membranous nephropathy (IMN). It has been demonstrated to mitigate IMN proteinuria by inhibiting podocyte apoptosis. however, the precise mechanism has not been fully elucidated. Methods A passive Heymann nephropathy (PHN) rat model was used to mimic the in vivo disease characteristics of IMN. The PHN rats were intragastrically administered SQ (12.6/6.3 mL/kg) or tacrolimus (0.315 mg/kg) for 21 days. SQ was applied to ADR-induced podocytes in vitro. The effects of SQ on IMN and its underlying mechanisms were determined by measuring biochemical indices, pathomorphological characteristics, membrane attack complex (MAC), cell morphology, and protein levels. Results The SQ ingredients found in rat serum underscored their successful absorption in rats. In PHN rats, SQ induced a significant reduction in proteinuria, MAC, C5b-9, and glomerular basement membrane thickness, along with a drop in apoptotic podocytes. Similarly, SQ exerted a protective effect against ADR-induced podocyte injury by inhibiting apoptosis. Furthermore, inhibition of the ERK/CK2-α/β-catenin pathway-mediated epithelial-to-mesenchymal transition (EMT) was found to be involved in the anti-apoptotic effect of SQ in PHN rats and podocytes, marked by the reduction in vimentin and α-SMA and the induction of Synaptopodin and Podocin protein levels. Conclusion Inhibition of EMT via the ERK/CK2-α/β-catenin pathway may be the main mechanism by which SQ suppresses podocyte apoptosis in IMN.
Collapse
Affiliation(s)
- Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Juanjuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bidan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Lihua Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Yi Feng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
3
|
Bertram JF, Cullen-McEwen LA, Andrade-Oliveira V, Câmara NOS. The intelligent podocyte: sensing and responding to a complex microenvironment. Nat Rev Nephrol 2025:10.1038/s41581-025-00965-y. [PMID: 40341763 DOI: 10.1038/s41581-025-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Podocytes are key components of the glomerular filtration barrier - a specialized structure that is responsible for the filtration of blood by the kidneys. They therefore exist in a unique microenvironment exposed to mechanical force and the myriad molecules that cross the filtration barrier. To survive and thrive, podocytes must continually sense and respond to their ever-changing microenvironment. Sensing is achieved by interactions with the surrounding extracellular matrix and neighbouring cells, through a variety of pathways, to sense changes in environmental factors such as nutrient levels including glucose and lipids, oxygen levels, pH and pressure. The response mechanisms similarly involve a range of processes, including signalling pathways and the actions of specific organelles that initiate and regulate appropriate responses, including alterations in cell metabolism, immune regulation and changes in podocyte structure and cognate functions. These functions ultimately affect glomerular and kidney health. Imbalances in these processes can lead to inflammation, podocyte loss and glomerular disease.
Collapse
Affiliation(s)
- John F Bertram
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Brisbane, Queensland, Australia
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vinicius Andrade-Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
4
|
Ng WK, Thanusha G, Chong PP, Chuah C. The Power of Antibodies: Advancing Biomarker-Based Disease Detection and Surveillance. Immunol Invest 2025:1-25. [PMID: 40256875 DOI: 10.1080/08820139.2025.2492246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BACKGROUND Antibodies have long served as fundamental tools in disease diagnosis and surveillance. Their utility as biomarkers has expanded beyond infectious diseases to encompass a wide range of health conditions. OBJECTIVES This review aims to explore recent advancements in antibody biomarker discovery and their applications in diagnosing and monitoring diverse health conditions. It also examines the role of antibody surveillance in public health and epidemiological studies. METHODS A comprehensive analysis of recent literature was conducted, focusing on studies that identify and characterize disease-specific antibodies. Particular attention was given to their relevance in autoimmune diseases, infections, cancers, and neurological disorders. CONTENT The review highlights disease-specific antibody biomarkers and their clinical significance. It also discusses the utility and challenges of antibody-based surveillance in assessing disease prevalence, tracking immunity trends, and supporting One Health strategies. CONCLUSIONS Recent advancements in antibody biomarker discovery demonstrate significant potential in improving early diagnosis, personalized treatment, and population-level health management. Antibody surveillance continues to play a pivotal role in guiding public health responses and understanding disease dynamics.
Collapse
Affiliation(s)
- Woei Kean Ng
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Gunasegran Thanusha
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Candy Chuah
- Unit of Microbiology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
5
|
Govindarajan KK. Current understanding of adult nephrotic syndrome: Minimal change disease. World J Nephrol 2025; 14:101930. [PMID: 40134646 PMCID: PMC11755233 DOI: 10.5527/wjn.v14.i1.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
The underlying molecular changes that result in minimal change disease (nephrotic syndrome) require an in-depth analysis. Current molecular studies have shown the involvement of zinc fingers and homeobox transcriptional factors in its pathogenesis. The application of therapeutic drugs relies on understanding the cascade of molecular events to determine their efficacy in managing the clinical condition.
Collapse
Affiliation(s)
- Krishna Kumar Govindarajan
- Department of Pediatric Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
6
|
Maslyennikov Y, Bărar AA, Rusu CC, Potra AR, Tirinescu D, Ticala M, Urs A, Pralea IE, Iuga CA, Moldovan DT, Kacso IM. The Spectrum of Minimal Change Disease/Focal Segmental Glomerulosclerosis: From Pathogenesis to Proteomic Biomarker Research. Int J Mol Sci 2025; 26:2450. [PMID: 40141093 PMCID: PMC11941885 DOI: 10.3390/ijms26062450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Podocyte injury plays a central role in both focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). Pathogenic mechanisms are diverse and incompletely understood, partially overlap between FSGS and MCD, and are not reflected by kidney biopsy. In order to optimize the current variable response to treatment, personalized management should rely on pathogenesis. One promising approach involves identifying biomarkers associated with specific pathogenic pathways. With the advancement of technology, proteomic studies could be a valuable tool to improve knowledge in this area and define valid biomarkers, as they have in other areas of glomerular disease. This work attempts to cover and discuss the main mechanisms of podocyte injury, followed by a review of the recent literature on proteomic biomarker studies in podocytopathies. Most of these studies have been conducted on biofluids, while tissue proteomic studies applied to podocytopathies remain limited. While we recognize the importance of non-invasive biofluid biomarkers, we propose a sequential approach for their development: tissue proteomics could first identify proteins with increased expression that may reflect underlying disease mechanisms; subsequently, the validation of these proteins in urine or plasma could pave the way to a diagnostic and prognostic biomarker-based approach.
Collapse
Affiliation(s)
- Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Alexandra Urs
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Ioana Ecaterina Pralea
- Department of Personalized Medicine and Rare Diseases, MedFuture—Research Centre for Biomedical Research, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.E.P.); (C.A.I.)
| | - Cristina Adela Iuga
- Department of Personalized Medicine and Rare Diseases, MedFuture—Research Centre for Biomedical Research, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.E.P.); (C.A.I.)
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| |
Collapse
|
7
|
Dong Y, Xu H, Tang D. Membranous Nephropathy Target Antigens Display Podocyte-Specific and Non-Specific Expression in Healthy Kidneys. Genes (Basel) 2025; 16:241. [PMID: 40149392 PMCID: PMC11942440 DOI: 10.3390/genes16030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Autoimmunity towards podocyte antigens causes membranous nephropathy (MN). Numerous MN target antigens (MNTAgs) have been reported, including PLA2R1, THSD7A, NTNG1, TGFBR3, HTRA1, NDNF, SEMA3B, FAT1, EXT1, CNTN1, NELL1, PCDH7, EXT2, PCSK6, and NCAM1, but their podocyte expression has not been thoroughly studied. METHODS We screened CZ CELLxGene single-cell RNA (scRNA) sequence datasets for those of adult, fetal, and mouse kidneys and analyzed the above MNTAgs' expression. RESULTS In adult kidneys, most MNTAgs are present in podocytes, except PCSK6 and NCAM1. PLA2R1 is expressed significantly more than other MNTAgs in podocytes and is a major podocyte marker, consistent with PLA2R1 as the dominant MNTAg. Additionally, PLA2R1 is a top-upregulated gene in the podocytes of chronic kidney disease, acute kidney injury, and diabetic nephropathy, indicating its general role in causing podocyte injury. PLA2R1, NTNG1, HTRA1, and NDNF display podocyte-enriched expression along with elevated chromatin accessibility in podocytes, suggesting transcription initiation contributing to their preference expression in podocytes. In the fetal kidney, most MNTAgs are expressed in podocytes. While PLA2R1 is weakly present in podocytes, SEMA3B is abundantly expressed in immature and mature podocytes, supporting SEMA3B as a childhood MNTAg. In mouse kidneys, Thsd7a is the only MNTAg with a prominent level and podocyte-specific expression. Conclusions: Most MNTAgs are present in podocytes in adults and during renal development. In adults, PLA2R1 expression is highly enriched in podocytes and significantly upregulated in multiple kidney diseases accompanied by proteinuria. In mouse kidneys, Thsd7a is specifically expressed in podocytes at an elevated level.
Collapse
Affiliation(s)
- Ying Dong
- Department of Surgery, McMaster University, Hamilton, ON L8S 1C7, Canada;
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Hui Xu
- The Division of Nephrology, Xiangya Hospital of the Central South University, Changsha 410008, China;
| | - Damu Tang
- Department of Surgery, McMaster University, Hamilton, ON L8S 1C7, Canada;
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
8
|
Lv J, Yu H, Du S, Xu P, Zhao Y, Qi W, Wang X. Targeting endoplasmic reticulum stress: an innovative therapeutic strategy for podocyte-related kidney diseases. J Transl Med 2025; 23:95. [PMID: 39838496 PMCID: PMC11752968 DOI: 10.1186/s12967-025-06076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
The endoplasmic reticulum (ER) is a vital organelle responsible for protein quality control, including the folding, modification, and transport of proteins. When misfolded or unfolded proteins accumulate in the ER, it triggers endoplasmic reticulum stress (ERS) and activates the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or excessive ERS can lead to apoptosis. The kidneys play a crucial role in maintaining physiological functions by excreting metabolic waste, regulating blood volume, balancing electrolytes and acid-base levels, and secreting various bioactive substances. Podocytes, epithelial cells situated outside the glomerular basement membrane, are essential for maintaining the structural integrity and permeability of the glomerular filtration barrier. Previous studies have shown that ERS in podocytes can contribute to the development of diseases such as glomerulonephritis, hereditary nephropathy, and diabetic kidney disease, potentially progressing to end-stage renal disease and causing patient mortality. As such, investigating ERS in podocytes has become a key area of focus in kidney disease research. This study examines recent advancements in understanding the effects of excessive ERS on podocytes across various kidney diseases, highlights the role of podocyte ERS in disease progression, and explores the potential therapeutic benefits of targeting the UPR to manage ERS in kidney diseases, thereby providing a scientific basis for clinical interventions.
Collapse
Affiliation(s)
- Jiao Lv
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Honghai Yu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Sasa Du
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengyu Xu
- College of Acupuncture and Moxibustion, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Yunyun Zhao
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiuge Wang
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
9
|
Bao J, Li Z, Yao H, Wu B, Gu L, Pan Y, Wang L. METTL10 attenuates adriamycin-induced podocyte injury by targeting cell dedifferentiation. Sci Rep 2025; 15:1218. [PMID: 39774961 PMCID: PMC11707283 DOI: 10.1038/s41598-024-80526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic kidney disease (CKD) is a worldwide public health problem. Podocyte damage is a hallmark of glomerular diseases including focal segmental glomerulosclerosis (FSGS) and one of the leading causes of CKD. Lysine methylation is a crucial post-translational modification. Beyond epidemic regulation, various lysine methyltransferases have been recently reported to participate in disease progression, including cancers and kidney diseases. Among them, Methyltransferase-like 10 (METTL10), is recognized as a gene associated with estimated glomerular filtration rate (eGFR) and CKD risk. However, its role in podocyte damage remains unclear. We identified the differentially expressed genes(DEGs)in podocyte injury by bioinformatics analysis. Patients diagnosed as idiopathic FSGS by renal biopsy were enrolled. Mouse model was established by Adriamycin(ADR) and urinary albumin/ creatinine ratio(UACR) was detected. Murine podocyte cell line was stimulated with ADR. We determined METTL10 was one of the significantly downregulated genes in damaged podocytes, confirmed the decreased glomerular expression of METTL10 in patients with idiopathic FSGS and in mice with ADR-induced nephrosis, respectively. Moreover, we found a negative correlation between glomerular METTL10 levels and UACR in mice. METTL10 was reduced in ADR-treated podocytes, accompanied by podocyte dedifferentiation (loss of synaptopodin, podocin, nephrin, WT-1) and acquisition of mesenchymal cell markers (snail, desmin, pax2). Knockdown of METTL10 promoted their dedifferentiation. METTL10 regulates podocyte dedifferentiation under damaging stimuli and protects podocytes.
Collapse
Affiliation(s)
- Jiwen Bao
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Ziyang Li
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanzhen Yao
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Wu
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Roman M, Nowicki M. Detailed Pathophysiology of Minimal Change Disease: Insights into Podocyte Dysfunction, Immune Dysregulation, and Genetic Susceptibility. Int J Mol Sci 2024; 25:12174. [PMID: 39596249 PMCID: PMC11595011 DOI: 10.3390/ijms252212174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Minimal Change Disease (MCD) is a predominant cause of idiopathic nephrotic syndrome in the pediatric population, yet presents significant clinical challenges due to its frequent relapses and steroid resistance. Despite its relatively benign histological appearance, MCD is characterized by severe proteinuria, hypoalbuminemia, and edema, which may affect patient outcomes. Current treatment strategies primarily rely on corticosteroids, which are effective in inducing remission but are associated with high relapse rates, steroid resistance, and numerous long-term side effects, underscoring the need for more targeted and effective therapeutic approaches. This narrative review synthesizes current knowledge on the pathophysiological mechanisms underlying MCD, focusing on the following three critical areas: podocyte dysfunction, immune dysregulation, and genetic susceptibility. Podocyte dysfunction, particularly involving alterations in nephrin, plays a central role in the breakdown of the glomerular filtration barrier, leading to the characteristic proteinuria observed in MCD. Immune dysregulation, including the presence of autoantibodies against nephrin and other podocyte components, exacerbates podocyte injury and contributes to disease progression, suggesting an autoimmune component to the disease. Genetic factors, particularly mutations in the NPHS1 and NPHS2 genes, have been identified as significant contributors to disease susceptibility, influencing the variability in treatment response and overall disease severity. Understanding these mechanisms is crucial for developing targeted therapies that address the underlying causes of MCD rather than merely managing its symptoms. This review highlights the need for further research into these pathophysiological processes to pave the way for more personalized and effective treatment strategies, ultimately improving patient outcomes and reducing reliance on corticosteroids.
Collapse
Affiliation(s)
| | - Michał Nowicki
- Department of Nephrology, Hypertension, Transplantation and Internal Medicine, Central University Hospital, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| |
Collapse
|
11
|
Niu Q, Guo Z, Liang Y, Zuo L. Soluble Epoxide Hydrolase Inhibition Attenuates Proteinuria by Alleviating Renal Inflammation and Podocyte Injuries in Adriamycin-Induced Nephropathy. Int J Mol Sci 2024; 25:10629. [PMID: 39408958 PMCID: PMC11476994 DOI: 10.3390/ijms251910629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) has previously been demonstrated to play an important part in kidney diseases by hydrolyzing renoprotective epoxyeicosatrienoic acids to their less active diols. However, little is known about the role of sEH in primary glomerular diseases. Here, we investigated the effects of sEH inhibition on proteinuria in primary glomerular diseases and the underlying mechanism. The expression of sEH in the renal tubules of patients with minimal change disease, IgA nephropathy, and membranous nephropathy was significantly increased. Renal sEH expression level was positively correlated with the 24 h urine protein excretion and negatively correlated with serum albumin. In the animal model of Adriamycin (ADR)-induced nephropathy, renal sEH mRNA and protein expression increased significantly. Pharmacological inhibition of sEH with AUDA effectively reduced urine protein excretion and attenuated renal pathological damage. Furthermore, sEH inhibition markedly abrogated the abnormal expressions of nephrin and desmin in glomerular podocytes induced by ADR. More importantly, AUDA treatment inhibited renal NF-κB activation and reduced TNF-α levels in rats with ADR-induced nephropathy. Overall, our findings suggest that sEH inhibition ameliorates renal inflammation and podocyte injury, thus reducing proteinuria and exerting renoprotective effects. Targeting sEH might be a potential strategy for the treatment of proteinuria in primary glomerular diseases.
Collapse
Affiliation(s)
| | | | - Yaoxian Liang
- Department of Nephrology, Peking University People’s Hospital, Beijing 100044, China; (Q.N.); (Z.G.); (L.Z.)
| | | |
Collapse
|
12
|
Al-Diab O, Sünkel C, Blanc E, Catar RA, Ashraf MI, Zhao H, Wang P, Rinschen MM, Fritsche-Guenther R, Grahammer F, Bachmann S, Beule D, Kirwan JA, Rajewsky N, Huber TB, Gürgen D, Kusch A. Sex-specific molecular signature of mouse podocytes in homeostasis and in response to pharmacological challenge with rapamycin. Biol Sex Differ 2024; 15:72. [PMID: 39278930 PMCID: PMC11404044 DOI: 10.1186/s13293-024-00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.
Collapse
Affiliation(s)
- Ola Al-Diab
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christin Sünkel
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rusan Ali Catar
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Muhammad Imtiaz Ashraf
- Department of Surgery, Experimental Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pinchao Wang
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sebastian Bachmann
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 10117, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dennis Gürgen
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin-Buch, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- BIH Biomedical Innovation Academy (BIA), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
13
|
Wang M, Yang J, Fang X, Lin W, Yang Y. Membranous nephropathy: pathogenesis and treatments. MedComm (Beijing) 2024; 5:e614. [PMID: 38948114 PMCID: PMC11214595 DOI: 10.1002/mco2.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Membranous nephropathy (MN), an autoimmune disease, can manifest at any age and is among the most common causes of nephrotic syndrome in adults. In 80% of cases, the specific etiology of MN remains unknown, while the remaining cases are linked to drug use or underlying conditions like systemic lupus erythematosus, hepatitis B virus, or malignancy. Although about one-third of patients may achieve spontaneous complete or partial remission with conservative management, another third face an elevated risk of disease progression, potentially leading to end-stage renal disease within 10 years. The identification of phospholipase A2 receptor as the primary target antigen in MN has brought about a significant shift in disease management and monitoring. This review explores recent advancements in the pathophysiology of MN, encompassing pathogenesis, clinical presentations, diagnostic criteria, treatment options, and prognosis, with a focus on emerging developments in pathogenesis and therapeutic strategies aimed at halting disease progression. By synthesizing the latest research findings and clinical insights, this review seeks to contribute to the ongoing efforts to enhance our understanding and management of this challenging autoimmune disorder.
Collapse
Affiliation(s)
- Mengqiong Wang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Jingjuan Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Xin Fang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| | - Yi Yang
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of Medicine, International Institutes of MedicineZhejiang UniversityYiwuChina
| |
Collapse
|