1
|
Xu W, Liu S, Li W, Xu B, Shan T, Lin R, Du YT, Chen G. Plasmodium Infection Modulates Host Inflammatory Response through circRNAs during the Intracellular Stage in Red Blood Cells. ACS Infect Dis 2025; 11:1018-1029. [PMID: 40083276 PMCID: PMC11997988 DOI: 10.1021/acsinfecdis.5c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The integration of RNA- and DNA-based assays enables the investigation of disease dynamics, specifically assessing the role of asymptomatic or subclinical infections in malaria transmission. Circular RNAs (circRNAs), a distinct category of noncoding RNAs, are implicated in numerous pathogenic mechanisms. As of now, research has yet to explore circRNAs' function in malaria infection. The findings revealed that Plasmodium infection upregulated 60 circRNAs and downregulated 71 in BALB/c mice. We selected 11 differentially expressed (DE) circRNAs according to function prediction of target miRNA-mRNA and coding protein, and these were further confirmed by validation experiments. IRESfinder, GO, and KEGG evaluations indicated that 7 DE circRNAs possess protein-coding potential and are enriched in the MAPK signaling cascade. In P.y17XL-infected BALB/c mouse models, the findings substantiated that the dynamic characteristics of DE circRNAs correlated with inflammation, and the MAPK and NF-κB signaling cascades were activated, also contributing to the inflammatory reaction during malaria infection. This study establishes Plasmodium-induced circRNA expression as a novel mechanism by which the parasite modulates host immune signaling, advancing the understanding of Plasmodium-host cell interactions. In addition, 42 circRNAs were found in normal BALB/c mice, and 25 circRNAs were discovered in P.y17XL-infected BALB/c mice, excluding 1238 circRNAs shared by normal and P.y17XL-infected BALB/c mice. Plasmodium infection changes the expression profile of circRNAs in the host, and these altered circRNAs are involved in the inflammatory response during malaria infection. In addition, Plasmodium possibly regulates the reverse splicing of pre-mRNA or m6A modification of RNA, inducing the production of novel circRNAs in the host.
Collapse
Affiliation(s)
- Wenxin Xu
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
- Graduate
school, Jiamusi University, No 148 xuefu street, Jiamusi Xiangyang district 154007, China
| | - Shuangchun Liu
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
| | - Wanqian Li
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
| | - Bin Xu
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
- Graduate
school, Jiamusi University, No 148 xuefu street, Jiamusi Xiangyang district 154007, China
| | - Ting Shan
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
- Graduate
school, Jiamusi University, No 148 xuefu street, Jiamusi Xiangyang district 154007, China
| | - Ronghai Lin
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
| | - Yun-Ting Du
- Department
of Laboratory Medicine, Cancer Hospital
of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Shenyang, Dadong District 110042, China
| | - Guang Chen
- Taizhou
Municipal Hospital (Taizhou University Affiliated Municipal Hospital),
School of Medicine, Taizhou University, No 1139 shifu road, Taizhou, Jiaojiang district 318000, China
| |
Collapse
|
2
|
Ma J, Hou S, Gu X, Guo P, Zhu J. Analysis of shared pathogenic mechanisms and drug targets in myocardial infarction and gastric cancer based on transcriptomics and machine learning. Front Immunol 2025; 16:1533959. [PMID: 40191191 PMCID: PMC11968731 DOI: 10.3389/fimmu.2025.1533959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Background Recent studies have suggested a potential association between gastric cancer (GC) and myocardial infarction (MI), with shared pathogenic factors. This study aimed to identify these common factors and potential pharmacologic targets. Methods Data from the IEU Open GWAS project were used. Two-sample Mendelian randomization (MR) analysis was used to explore the causal link between MI and GC. Transcriptome analysis identified common differentially expressed genes, followed by enrichment analysis. Drug target MR analysis and eQTLs validated these associations with GC, and the Steiger direction test confirmed their direction. The random forest and Lasso algorithms were used to identify genes with diagnostic value, leading to nomogram construction. The performance of the model was evaluated via ROC, calibration, and decision curves. Correlations between diagnostic genes and immune cell infiltration were analyzed. Results MI was linked to increased GC risk (OR=1.112, P=0.04). Seventy-four genes, which are related mainly to ubiquitin-dependent proteasome pathways, were commonly differentially expressed between MI and GC. Nine genes were consistently associated with GC, and eight had diagnostic value. The nomogram built on these eight genes had strong predictive performance (AUC=0.950, validation set AUC=0.957). Immune cell infiltration analysis revealed significant correlations between several genes and immune cells, such as T cells, macrophages, neutrophils, B cells, and dendritic cells. Conclusion MI is associated with an increased risk of developing GC, and both share common pathogenic factors. The nomogram constructed based on 8 genes with diagnostic value had good predictive performance.
Collapse
Affiliation(s)
- Junyang Ma
- School of Clinical Medicine, Jining Medical University, Jining, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shufu Hou
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xinxin Gu
- Jinzhou Medical University, Shanghai Fengxian District Central Hospital Postgraduate Training Base, Shanghai, China
| | - Peng Guo
- College of Clinical and Basic Medicine, Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2025; 14:szae088. [PMID: 39674578 PMCID: PMC11878762 DOI: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital, Changsha, Hunan, People’s Republic of China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, People’s Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People’s Republic of China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2025; 14. [DOI: 2.doi: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147–MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital , Changsha, Hunan ,
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University , Changsha, Hunan ,
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
- Beijing Laboratory of Oral Health, Capital Medical University , Beijing ,
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences , Beijing ,
| |
Collapse
|