1
|
Anees Ur Rehman Qureshi M, Arshad N, Rasool A, Janjua NK, Butt MS, Naqeeb Ur Rehman Qureshi M, Ismail H. Kappa-carrageenan and sodium alginate-based pH-responsive hydrogels for controlled release of methotrexate. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231952. [PMID: 38660601 PMCID: PMC11040253 DOI: 10.1098/rsos.231952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Despite remarkable progress in medical sciences, modern man is still fighting the battle against cancer. In 2022, only in the USA, 640 000 deaths and 2 370 000 patients were reported because of cancer. Chemotherapy is the most widely used for cancer treatments. However, chemotherapeutics have severe physicochemical side effects. Therefore, we have prepared poly(amididoamine) dendrimeric carrageenan (CG), sodium alginate (SA) and poly(vinyl alcohol) (PVA) hydrogels by using solution casting methodology. The constituents of hydrogels were cross-linked by mutable quantity of 3-aminopropyl(diethoxy)methyl silane (APDMS). Hydrogels were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscope and atomic force microscopy. Hydrogels exhibited higher swelling volumes in 5-7 pH range. In vitro biodegradation in ribonuclease-A solution and cytocompatibility analysis against DF-1 fibroblasts established their biodegradable and non-toxic nature, which enables them as a suitable carrier for chemotherapeutic compounds. Hence, methotrexate (MTX) as a model drug was loaded on CAP-8 hydrogel and its release was detected by the UV-visible spectrophotometer in phosphate-buffered saline (PBS) solution. In 13.5 h, 81.25% and 77.23% of MTX were released at pH 7.4 (blood pH) and 5.3 (tumour pH) in PBS, respectively. MTX was released by super case II mechanism and best fitted to zero-order and Korsmeyer-Peppas model. The synthesized APDMS cross-linked CG/SA/PVA dendrimeric hydrogels could be an efficient model platform for the effective delivery of MTX in cancer treatments.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Shoaib Butt
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology, Islamabad44000, Pakistan
| | | | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700 , Pakistan
| |
Collapse
|
2
|
Azeem MK, Islam A, Khan RU, Rasool A, Anees Ur Rehman Qureshi M, Rizwan M, Shuib RK, Rehman A, Sadiqa A. Guar gum/poly ethylene glycol/graphene oxide environmentally friendly hybrid hydrogels for controlled release of boron micronutrient. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231157. [PMID: 38094268 PMCID: PMC10716656 DOI: 10.1098/rsos.231157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
The present study was aimed at synthesis of polymeric hydrogels for controlled boron (B) release, as B deficiency is a major factor that decreases crops yield. Thus, graphene oxide incorporated guar gum and poly (ethylene glycol) hydrogels were prepared using the Solution Casting method for boron release. 3-Glycidyloxypropyl trimethoxysilane (GLYMOL) was used as a cross-linker. Characterizations of hydrogels were carried out by Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis and Scanning Electron scope. The FTIR outcomes confirmed the existence of functional groups, bindings and development of hydrogel frameworks from incorporated components. The quantity of GLYMOL directly increased the thermal stability and water retention but decreased the swelling %. The maximum swelling for the hydrogel formulations was observed at pH 7. The addition of GLYMOL changed the diffusion from quasi-Fickcian to non-Fickcian diffusion. The maximum swelling quantities of 3822% and 3342% were exhibited by GPP (control) and GPP-8 in distilled water, respectively. Boron release was determined in distilled water and sandy soil by azomethine-H test using UV-Visible spectrophotometer while 85.11% and 73.65% boron was released from BGPP-16, respectively. In short, water retentive, water holding capacities, swelling performances, biodegradability and swelling/deswelling features would offer an ideal platform for boron release in sustained agricultural applications.
Collapse
Affiliation(s)
- Muhammad Khalid Azeem
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Punjab, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rafi Ullah Khan
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan
| | | | - Muhammad Rizwan
- Department of Chemistry, University of Lahore 54000, Pakistan
| | - Raa Khimi Shuib
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Penang, Malaysia
| | - Abdul Rehman
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Penang, Malaysia
- Department of Polymer Engineering, National Textile University, Karachi campus, 74900, Karachi, Pakistan
| | - Ayesha Sadiqa
- Department of Chemistry, University of Lahore 54000, Pakistan
| |
Collapse
|
3
|
Qureshi MAUR, Arshad N, Rasool A, Rizwan M, Rasheed T. Guar gum-based stimuli responsive hydrogels for sustained release of diclofenac sodium. Int J Biol Macromol 2023; 250:126275. [PMID: 37567541 DOI: 10.1016/j.ijbiomac.2023.126275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
In the current study, hydrogels for the controlled release of diclofenac sodium were synthesized from graphene oxide-reinforced guar gum and poly (N-vinyl-2-pyrrolidone) using the Solution Casting Technique. Varying concentrations of 3-Glycidyloxypropyl trimethoxysilane (GLYMO) were employed for the crosslinking of hydrogels. Further, the characterization of hydrogels was carried out using different techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction, thermal analysis and scanning electron microscope. The FTIR investigations reveals particular functionalities and development of hydrogel interfaces. While thermal analysis prophesied that, improvement in forces among hydrogel components is directly proportional to the GLYMO concentration. In-vitro biodegradation test and cell viability assay against HEK-293 cell lines confirmed their biodegradable and biocompatible nature. GPG-32 demonstrated maximum antibacterial activity against P.aeruginosa and E.coli strains. The maximum swelling 2001 % and 1814 % in distilled water were recorded for GPG (control) and GPG-8 respectively that obeyed Fick's law. Hydrogels displayed high swelling responses at pH 6 in buffer and non-buffer solutions. In 2.5 h, 88.7 % diclofenac sodium was released which was determined by UV visible spectrophotometer. In conclusion, guar gum-based non-toxic, biocompatible and biodegradable hydrogels would be a model platform for targeting inflammation and pains. Furthermore, improved mechanical and viscoelastic behavior of hydrogels could also be explored for making drug loaded dressings for wound healing applications.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University Islamabad, Pakistan.
| | - Atta Rasool
- School of Chemistry, University of the Punjab, 54590 Lahore, Pakistan
| | - Muhmmad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
4
|
A novel transdermal delivery route for energy supplements: Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B 12. Int J Biol Macromol 2023; 230:123187. [PMID: 36627031 DOI: 10.1016/j.ijbiomac.2023.123187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Nanofibrous patches have attracted much attention as a solution to resolve drug delivery challenges. In this study, vitamin B12- loaded polyvinyl alcohol (PVA)/chitosan (Cs) nanofiber patch (NFP) was electrospun and cross-linked by glutaraldehyde (GA). The physicochemical properties of the nanofiber patches were assessed by morphological studies, FTIR analysis, hydrophilicity test, mechanical tests, and in-vitro evaluations including biodegradability, MTT assay, and cumulative release test of vitamin. In-vivo studies were also carried out by measuring vitamin B12 levels in the bloodstream and conducting histopathology studies on the animal models. The results showed that the mean diameter of Cs/PVA/B12 and cross-linked patch were approximately 207 and 256 nm, respectively. Cross-linking of NFP led to the lower, slower, and more continuous release of the vitamin with a slight decrease in biodegradability, and an increase in the mechanical properties of the nanofiber patches. Furthermore, the cytocompatibility assay, MTT, and in vivo results revealed no cytotoxicity of Cs/PVA/B12 NFP towards L929 cell line. No lesion or tissue damage was observed in the skin tissue of the animal models wearing these skin patches. Therefore, B12-loaded NFP can be introduced as a potential candidate for commercial transdermal routes.
Collapse
|
5
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|
6
|
Maliszewska I, Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14091661. [PMID: 35566830 PMCID: PMC9103814 DOI: 10.3390/polym14091661] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, nanofibers with antimicrobial activity are of great importance due to the widespread antibiotic resistance of many pathogens. Electrospinning is a versatile method of producing ultrathin fibers with desired properties, and this technique can be optimized by controlling parameters such as solution/melt viscosity, feeding rate, and electric field. High viscosity and slow feeding rate cause blockage of the spinneret, while low viscosity and high feeding rate result in fiber discontinuities or droplet formation. The electric field must be properly set because high field strength shortens the solidification time of the fluid streams, while low field strength is unable to form the Taylor cone. Environmental conditions, temperature, and humidity also affect electrospinning. In recent years, significant advances have been made in the development of electrospinning methods and the engineering of electrospun nanofibers for various applications. This review discusses the current research on the use of electrospinning to fabricate composite polymer fibers with antimicrobial properties by incorporating well-defined antimicrobial nanoparticles (silver, titanium dioxide, zinc dioxide, copper oxide, etc.), encapsulating classical therapeutic agents (antibiotics), plant-based bioactive agents (crude extracts, essential oils), and pure compounds (antimicrobial peptides, photosensitizers) in polymer nanofibers with controlled release and anti-degradation protection. The analyzed works prove that the electrospinning process is an effective strategy for the formation of antimicrobial fibers for the biomedicine, pharmacy, and food industry.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| |
Collapse
|