1
|
Liu H, Li Y, Wang Y, Zhang L, Liang X, Gao C, Yang Y. Red blood cells-derived components as biomimetic functional materials: Matching versatile delivery strategies based on structure and function. Bioact Mater 2025; 47:481-501. [PMID: 40034412 PMCID: PMC11872572 DOI: 10.1016/j.bioactmat.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Red blood cells (RBCs), often referred to as "intelligent delivery systems", can serve as biological or hybrid drug carriers due to their inherent advantages and characteristics. This innovative approach has the potential to enhance biocompatibility, pharmacokinetics, and provide targeting properties for drugs. By leveraging the unique structure and contents of RBCs, drug-loading pathways can be meticulously designed to align with these distinctive features. This review article primarily discusses the drug delivery strategies and their applications that are informed by the structural and functional properties of the main components of RBCs, including living RBCs, membranes, hollow RBCs, and hemoglobin. Overall, this review article would assist efforts to make better decisions on optimization and rational utilization of RBCs derivatives-based drug delivery strategies for the future direction in clinical translation.
Collapse
Affiliation(s)
- Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Yi Li
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Liying Zhang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Xiaoqing Liang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| |
Collapse
|
2
|
Mykhailova O, Brandon-Coatham M, Durand K, Olafson C, Xu A, Yi QL, Kanias T, Acker JP. Estimated median density identifies donor age and sex differences in red blood cell biological age. Transfusion 2024; 64:705-715. [PMID: 38420746 DOI: 10.1111/trf.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Donors possess heterogeneous red cell concentrates (RCCs) in terms of the biological age of their red blood cells (RBCs) as a direct result of various donor-dependent factors influencing rates of erythropoiesis. This study aimed to estimate the median biological age of RBCs in RCCs based on donor age and sex to investigate inherent differences in blood products' biological ages over hypothermic storage using estimated median densities (EMDs). STUDY DESIGN Sixty RCCs were collected from four donor groups; male and female teenagers (17-19 years old) and seniors (75+ years old). A Percoll density-based separation approach was used to quantify the EMDs indicative of biological age. EMD and mean corpuscular hemoglobin (MCHC) were compared by correlation analyses. RESULTS Differences in the median biological age of RCC units were observed with male donors having significantly higher EMDs compared to females (p < .001). Teen male donors possessed the highest EMDs with significantly elevated levels of biologically aged RBCs compared to both female donor groups, regardless of storage duration (p < .05). Throughout most of the 42-day storage period, senior donors, particularly senior females, demonstrated the strongest correlation between EMD and MCHC (R2 > 0.5). CONCLUSIONS This study provides further evidence that there are inherent differences between the biological age profiles of RBCs between blood donors of different sex and age. Our findings further highlight that biological age may contribute to RBC quality during storage and that donor characteristics need to be considered when evaluating transfusion safety and efficacy.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | | | - Kiarra Durand
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - April Xu
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Alexandrova-Watanabe A, Abadjieva E, Giosheva I, Langari A, Tiankov T, Gartchev E, Komsa-Penkova R, Todinova S. Assessment of Red Blood Cell Aggregation in Preeclampsia by Microfluidic Image Flow Analysis-Impact of Oxidative Stress on Disease Severity. Int J Mol Sci 2024; 25:3732. [PMID: 38612543 PMCID: PMC11011533 DOI: 10.3390/ijms25073732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disease characterized by proteinuria, endothelial dysfunction, and placental hypoxia. Reduced placental blood flow causes changes in red blood cell (RBC) rheological characteristics. Herein, we used microfluidics techniques and new image flow analysis to evaluate RBC aggregation in preeclamptic and normotensive pregnant women. The results demonstrate that RBC aggregation depends on the disease severity and was higher in patients with preterm birth and low birth weight. The RBC aggregation indices (EAI) at low shear rates were higher for non-severe (0.107 ± 0.01) and severe PE (0.149 ± 0.05) versus controls (0.085 ± 0.01; p < 0.05). The significantly more undispersed RBC aggregates were found at high shear rates for non-severe (18.1 ± 5.5) and severe PE (25.7 ± 5.8) versus controls (14.4 ± 4.1; p < 0.05). The model experiment with in-vitro-induced oxidative stress in RBCs demonstrated that the elevated aggregation in PE RBCs can be partially due to the effect of oxidation. The results revealed that RBCs from PE patients become significantly more adhesive, forming large, branched aggregates at a low shear rate. Significantly more undispersed RBC aggregates at high shear rates indicate the formation of stable RBC clusters, drastically more pronounced in patients with severe PE. Our findings demonstrate that altered RBC aggregation contributes to preeclampsia severity.
Collapse
Affiliation(s)
| | - Emilia Abadjieva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Ina Giosheva
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Tihomir Tiankov
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.-W.); (E.A.); (T.T.)
| | - Emil Gartchev
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 1431 Sofia, Bulgaria; (I.G.); (E.G.)
| | | | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
4
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
5
|
Cortese-Krott MM. The Reactive Species Interactome in Red Blood Cells: Oxidants, Antioxidants, and Molecular Targets. Antioxidants (Basel) 2023; 12:1736. [PMID: 37760039 PMCID: PMC10525652 DOI: 10.3390/antiox12091736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Beyond their established role as oxygen carriers, red blood cells have recently been found to contribute to systemic NO and sulfide metabolism and act as potent circulating antioxidant cells. Emerging evidence indicates that reactive species derived from the metabolism of O2, NO, and H2S can interact with each other, potentially influencing common biological targets. These interactions have been encompassed in the concept of the reactive species interactome. This review explores the potential application of the concept of reactive species interactome to understand the redox physiology of RBCs. It specifically examines how reactive species are generated and detoxified, their interactions with each other, and their targets. Hemoglobin is a key player in the reactive species interactome within RBCs, given its abundance and fundamental role in O2/CO2 exchange, NO transport/metabolism, and sulfur species binding/production. Future research should focus on understanding how modulation of the reactive species interactome may regulate RBC biology, physiology, and their systemic effects.
Collapse
Affiliation(s)
- Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology and Angiology, Medical Faculty, Heinrich-Heine-University, Universitätstrasse 1, 40225 Düsseldorf, Germany;
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- CARID, Cardiovascular Research Institute, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Girasole M, Dinarelli S, Longo G. Correlating nanoscale motion and ATP production in healthy and favism erythrocytes: a real-time nanomotion sensor study. Front Microbiol 2023; 14:1196764. [PMID: 37333637 PMCID: PMC10272347 DOI: 10.3389/fmicb.2023.1196764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Red blood cells (RBCs) are among the simplest, yet physiologically relevant biological specimens, due to their peculiarities, such as their lack of nucleus and simplified metabolism. Indeed, erythrocytes can be seen as biochemical machines, capable of performing a limited number of metabolic pathways. Along the aging path, the cells' characteristics change as they accumulate oxidative and non-oxidative damages, and their structural and functional properties degrade. Methods In this work, we have studied RBCs and the activation of their ATP-producing metabolism using a real-time nanomotion sensor. This device allowed time-resolved analyses of the activation of this biochemical pathway, measuring the characteristics and the timing of the response at different points of their aging and the differences observed in favism erythrocytes in terms of the cellular reactivity and resilience to aging. Favism is a genetic defect of erythrocytes, which affects their ability to respond to oxidative stresses but that also determines differences in the metabolic and structural characteristic of the cells. Results Our work shows that RBCs from favism patients exhibit a different response to the forced activation of the ATP synthesis compared to healthy cells. In particular, the favism cells, compared to healthy erythrocytes, show a greater resilience to the aging-related insults which was in good accord with the collected biochemical data on ATP consumption and reload. Conclusion This surprisingly higher endurance against cell aging can be addressed to a special mechanism of metabolic regulation that permits lower energy consumption in environmental stress conditions.
Collapse
|
7
|
Signoretti C, Gupte SA. Studies in CRISPR-generated Mediterranean G6PD variant rats reveal G6PD orchestrates genome-wide DNA methylation and gene expression in vascular wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531429. [PMID: 36945640 PMCID: PMC10028921 DOI: 10.1101/2023.03.06.531429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA, 10595
| |
Collapse
|
8
|
Noulsri E, Lerdwana S. Blood Donors with Thalassemic Trait, Glucose-6-Phosphate Dehydrogenase Deficiency Trait, and Sickle Cell Trait and Their Blood Products: Current Status and Future Perspective. Lab Med 2023; 54:6-12. [PMID: 35943550 DOI: 10.1093/labmed/lmac061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The use of blood products for different medical purposes has increased in recent years. To meet increasing demand, some blood centers allow volunteer donors with thalassemic trait, glucose-6-phosphate dehydrogenase deficiency (G6PD) trait, and sickle cell trait (SCT) to donate blood if their hemoglobin values fall within acceptable ranges and show no signs of hemolysis. Currently, there are no standard guidelines or policies regarding the use or management of blood products obtained from these donors. However, in recent years, there has been advanced research on eligible donors who have these underlying conditions. In this review, we summarize the current knowledge from in vitro and in vivo studies regarding donor characteristics, changes in physical and biochemical parameters in blood products during processing and storage, and posttransfusion efficacy of blood products. In addition, we discuss some unresolved issues concerning blood products from thalassemic trait, G6PD-deficiency trait, and SCT donors.
Collapse
Affiliation(s)
- Egarit Noulsri
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surada Lerdwana
- Biomedical Research Incubator Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Anastasiadi AT, Stamoulis K, Papageorgiou EG, Lelli V, Rinalducci S, Papassideri IS, Kriebardis AG, Antonelou MH, Tzounakas VL. The time-course linkage between hemolysis, redox, and metabolic parameters during red blood cell storage with or without uric acid and ascorbic acid supplementation. FRONTIERS IN AGING 2023; 4:1161565. [PMID: 37025499 PMCID: PMC10072267 DOI: 10.3389/fragi.2023.1161565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Oxidative phenomena are considered to lie at the root of the accelerated senescence observed in red blood cells (RBCs) stored under standard blood bank conditions. It was recently shown that the addition of uric (UA) and/or ascorbic acid (AA) to the preservative medium beneficially impacts the storability features of RBCs related to the handling of pro-oxidant triggers. This study constitutes the next step, aiming to examine the links between hemolysis, redox, and metabolic parameters in control and supplemented RBC units of different storage times. For this purpose, a paired correlation analysis of physiological and metabolism parameters was performed between early, middle, and late storage in each subgroup. Strong and repeated correlations were observed throughout storage in most hemolysis parameters, as well as in reactive oxygen species (ROS) and lipid peroxidation, suggesting that these features constitute donor-signatures, unaffected by the diverse storage solutions. Moreover, during storage, a general "dialogue" was observed between parameters of the same category (e.g., cell fragilities and hemolysis or lipid peroxidation and ROS), highlighting their interdependence. In all groups, extracellular antioxidant capacity, proteasomal activity, and glutathione precursors of preceding time points anticorrelated with oxidative stress lesions of upcoming ones. In the case of supplemented units, factors responsible for glutathione synthesis varied proportionally to the levels of glutathione itself. The current findings support that UA and AA addition reroutes the metabolism to induce glutathione production, and additionally provide mechanistic insight and footing to examine novel storage optimization strategies.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
- *Correspondence: Vassilis L. Tzounakas,
| |
Collapse
|
10
|
Feng Y, Zhu Y, Bao Z, Wang B, Liu T, Wang H, Yu T, Yang Y, Yu L. Construction of Glucose-6-Phosphate Dehydrogenase Overexpression Strain of Schizochytrium sp. H016 to Improve Docosahexaenoic Acid Production. Mar Drugs 2022; 21:md21010017. [PMID: 36662190 PMCID: PMC9866257 DOI: 10.3390/md21010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an important omega-3 polyunsaturated fatty acid (PUFA) that plays a critical physiological role in human health. Schizochytrium sp. is considered an excellent strain for DHA production, but the synthesis of DHA is limited by the availability of nicotinamide adenine dinucleotide phosphate (NADPH). In this study, the endogenous glucose-6-phosphate dehydrogenase (G6PD) gene was overexpressed in Schizochytrium sp. H016. Results demonstrated that G6PD overexpression increased the availability of NADPH, which ultimately altered the fatty acid profile, resulting in a 1.91-fold increase in DHA yield (8.81 g/L) and increased carbon flux by shifting it from carbohydrate and protein synthesis to lipid production. Thus, G6PD played a vital role in primary metabolism. In addition, G6PD significantly increased DHA content and lipid accumulation by 31.47% and 40.29%, respectively. The fed-batch fermentation experiment results showed that DHA production reached 17.01 g/L in the overexpressing G6PD strain. These results elucidated the beneficial effects of NADPH on the synthesis of PUFA in Schizochytrium sp. H016, which may be a potential target for metabolic engineering. Furthermore, this study provides a promising regulatory strategy for the large-scale production of DHA in Schizochytrium sp.
Collapse
Affiliation(s)
- Yumei Feng
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhendong Bao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Bohan Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tingting Liu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Huihui Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tianyi Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Ying Yang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
- Correspondence: ; Tel.: +86-2-787-792-264
| |
Collapse
|
11
|
Jacob C, Kitagawa A, Signoretti C, Dzieciatkowska M, D'Alessandro A, Gupte A, Hossain S, D'Addario CA, Gupte R, Gupte SA. Mediterranean G6PD variant mitigates expression of DNA methyltransferases and right heart pressure in experimental model of pulmonary hypertension. J Biol Chem 2022; 298:102691. [PMID: 36372233 PMCID: PMC9731845 DOI: 10.1016/j.jbc.2022.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation potentially contributes to the pathogenesis of pulmonary hypertension (PH). However, the role of DNA methyltransferases (DNMTs: 1, 3a, and 3b), the epigenetic writers, in modulating DNA methylation observed in PH remains elusive. Our objective was to determine DNMT activity and expression in the lungs of experimental rat models of PH. Because the activity of DNMTs is metabolically driven, another objective was to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in regulating DNMT expression and activity in the lungs of novel loss-of-function Mediterranean G6PD variant (G6PDS188F) rats. As outlined for modeling PH, rats injected with sugen5416 (SU) were placed in a hypoxia (Hx) chamber set at 10% oxygen for 3 weeks and then returned to normoxia (Nx) for 5 weeks (SU/Hx/Nx). Rats kept in atmospheric oxygen and treated with SU were used as controls. We assessed the activity and expression of DNMTs in the lungs of rats exposed to SU/Hx/Nx. WT rats exposed to SU/Hx/Nx developed hypertension and exhibited increased DNMT activity and Dnmt1 and Dnmt3b expression. In G6PDS188F rats, which developed less of a SU/Hx/Nx-induced increase in right ventricle pressure and hypertrophy than WT rats, we observed a diminished increase in expression and activity of DNMTs, DNA hypomethylation, increased histone acetylation and methylation, and increased expression of genes encoding NOS3 and SOD2-vascular-protective proteins. Collectively, increased DNMTs contribute to reduced expression of protective genes and to the pathogenesis of SU/Hx/Nx-induced experimental PH. Notably, G6PD regulates the expression of DNMTs and protective proteins in the lungs of hypertensive rats.
Collapse
Affiliation(s)
- Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aaditya Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shakib Hossain
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | - Rakhee Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
12
|
Anastasiadi AT, Tzounakas VL, Dzieciatkowska M, Arvaniti VZ, Papageorgiou EG, Papassideri IS, Stamoulis K, D’Alessandro A, Kriebardis AG, Antonelou MH. Innate Variability in Physiological and Omics Aspects of the Beta Thalassemia Trait-Specific Donor Variation Effects. Front Physiol 2022; 13:907444. [PMID: 35755442 PMCID: PMC9214579 DOI: 10.3389/fphys.2022.907444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The broad spectrum of beta-thalassemia (βThal) mutations may result in mild reduction (β ++), severe reduction (β +) or complete absence (β 0) of beta-globin synthesis. βThal heterozygotes eligible for blood donation are "good storers" in terms of red blood cell (RBC) fragility, proteostasis and redox parameters of storage lesion. However, it has not been examined if heterogeneity in genetic backgrounds among βThal-trait donors affects their RBC storability profile. For this purpose, a paired analysis of physiological and omics parameters was performed in freshly drawn blood and CPD/SAGM-stored RBCs donated by eligible volunteers of β ++ (N = 4), β + (N = 9) and β 0 (N = 2) mutation-based phenotypes. Compared to β +, β ++ RBCs were characterized by significantly lower RDW and HbA2 but higher hematocrit, MCV and NADPH levels in vivo. Moreover, they had lower levels of reactive oxygen species and markers of oxidative stress, already from baseline. Interestingly, their lower myosin and arginase membrane levels were accompanied by increased cellular fragility and arginine values. Proteostasis markers (proteasomal activity and/or chaperoning-protein membrane-binding) seem to be also diminished in β ++ as opposed to the other two phenotypic groups. Overall, despite the low number of samples in the sub-cohorts, it seems that the second level of genetic variability among the group of βThal-trait donors is reflected not only in the physiological features of RBCs in vivo, but almost equally in their storability profiles. Mutations that only slightly affect the globin chain equilibrium direct RBCs towards phenotypes closer to the average control, at least in terms of fragility indices and proteostatic dynamics.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
13
|
Kitagawa A, Jacob C, Gupte SA. Glucose-6-phosphate dehydrogenase and MEG3 controls hypoxia-induced expression of serum response factor (SRF) and SRF-dependent genes in pulmonary smooth muscle cell. J Smooth Muscle Res 2022; 58:34-49. [PMID: 35491127 PMCID: PMC9057900 DOI: 10.1540/jsmr.58.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although hypoxia induces aberrant gene expression and dedifferentiation of smooth muscle cells (SMCs), mechanisms that alter dedifferentiation gene expression by hypoxia remain unclear. Therefore, we aimed to gain insight into the hypoxia-controlled gene expression in SMCs. We conducted studies using SMCs cultured in 3% oxygen (hypoxia) and the lungs of mice exposed to 10% oxygen (hypoxia). Our results suggest hypoxia upregulated expression of transcription factor CP2-like protein1, krüppel-like factor 4, and E2f transcription factor 1 enriched genes including basonuclin 2 (Bcn2), serum response factor (Srf), polycomb 3 (Cbx8), homeobox D9 (Hoxd9), lysine demethylase 1A (Kdm1a), etc. Additionally, we found that silencing glucose-6-phosphate dehydrogenase (G6PD) expression and inhibiting G6PD activity downregulated Srf transcript and hypomethylation of SMC genes (Myocd, Myh11, and Cnn1) and concomitantly increased their expression in the lungs of hypoxic mice. Furthermore, G6PD inhibition hypomethylated MEG3, a long non-coding RNA, gene and upregulated MEG3 expression in the lungs of hypoxic mice and in hypoxic SMCs. Silencing MEG3 expression in SMC mitigated the hypoxia-induced transcription of SRF. These findings collectively demonstrate that MEG3 and G6PD codependently regulate Srf expression in hypoxic SMCs. Moreover, G6PD inhibition upregulated SRF-MYOCD-driven gene expression, determinant of a differentiated SMC phenotype.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, BSB 546, 15 Dana Road, Valhalla, NY 10595, USA
| | - Christina Jacob
- Department of Pharmacology, New York Medical College, BSB 546, 15 Dana Road, Valhalla, NY 10595, USA
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, BSB 546, 15 Dana Road, Valhalla, NY 10595, USA
| |
Collapse
|
14
|
Tzounakas VL, Anastasiadi AT, Lekka ME, Papageorgiou EG, Stamoulis K, Papassideri IS, Kriebardis AG, Antonelou MH. Deciphering the Relationship Between Free and Vesicular Hemoglobin in Stored Red Blood Cell Units. Front Physiol 2022; 13:840995. [PMID: 35211035 PMCID: PMC8861500 DOI: 10.3389/fphys.2022.840995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Red blood cells (RBCs) release hemoglobin (Hb)-containing extracellular vesicles (EVs) throughout their lifespan in the circulation, and especially during senescence, by spleen-facilitated vesiculation of their membrane. During ex vivo aging under blood bank conditions, the RBCs lose Hb, both in soluble form and inside EVs that accumulate as a part of storage lesion in the supernatant of the unit. Spontaneous hemolysis and vesiculation are increasingly promoted by the storage duration, but little is known about any physiological linkage between them. In the present study, we measured the levels of total extracellular and EV-enclosed Hb (EV-Hb) in units of whole blood (n = 36) or packed RBCs stored in either CPDA-1 (n = 99) or in CPD-SAGM additive solution (n = 46), in early, middle, and late storage. The spectrophotometry data were subjected to statistical analysis to detect possible correlation(s) between storage hemolysis and EV-Hb, as well as the threshold (if any) that determines the area of this dynamic association. It seems that the percentage of EV-Hb is negatively associated with hemolysis levels from middle storage onward by showing low to moderate correlation profiles in all strategies under investigation. Moreover, 0.17% storage hemolysis was determined as the potential cut-off, above which this inverse correlation is evident in non-leukoreduced CPDA units. Notably, RBC units with hemolysis levels > 0.17% are characterized by higher percentage of nanovesicles (<100 nm) over typical microvesicles (100–400 nm) compared with the lower hemolysis counterparts. Our results suggest an ordered loss of Hb during RBC accelerated aging that might fuel targeted research to elucidate its mechanistic basis.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | | | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
15
|
Anastasiadi AT, Arvaniti VZ, Paronis EC, Kostomitsopoulos NG, Stamoulis K, Papassideri IS, D’Alessandro A, Kriebardis AG, Tzounakas VL, Antonelou MH. Corpuscular Fragility and Metabolic Aspects of Freshly Drawn Beta-Thalassemia Minor RBCs Impact Their Physiology and Performance Post Transfusion: A Triangular Correlation Analysis In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10030530. [PMID: 35327331 PMCID: PMC8945797 DOI: 10.3390/biomedicines10030530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
The clarification of donor variation effects upon red blood cell (RBC) storage lesion and transfusion efficacy may open new ways for donor–recipient matching optimization. We hereby propose a “triangular” strategy for studying the links comprising the transfusion chain—donor, blood product, recipient—as exemplified in two cohorts of control and beta-thalassemia minor (βThal+) donors (n = 18 each). It was unraveled that RBC osmotic fragility and caspase-like proteasomal activity can link both donor cohorts to post-storage states. In the case of heterozygotes, the geometry, size and intrinsic low RBC fragility might be lying behind their higher post-storage resistance to lysis and recovery in mice. Moreover, energy-related molecules (e.g., phosphocreatine) and purine metabolism factors (IMP, hypoxanthine) were specifically linked to lower post-storage hemolysis and phosphatidylserine exposure. The latter was also ameliorated by antioxidants, such as urate. Finally, higher proteasomal conservation across the transfusion chain was observed in heterozygotes compared to control donors. The proposed “triangularity model” can be (a) expanded to additional donor/recipient backgrounds, (b) enriched by big data, especially in the post-transfusion state and (c) fuel targeted experiments in order to discover new quality biomarkers and design more personalized transfusion medicine schemes.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
| | - Efthymios C. Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (N.G.K.)
| | - Nikolaos G. Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), 11527 Athens, Greece; (E.C.P.); (N.G.K.)
| | | | - Issidora S. Papassideri
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece;
| | - Vassilis L. Tzounakas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
- Correspondence: (V.L.T.); (M.H.A.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (A.T.A.); (V.-Z.A.); (I.S.P.)
- Correspondence: (V.L.T.); (M.H.A.)
| |
Collapse
|
16
|
Li H, Fang K, Peng H, He L, Wang Y. The relationship between glycosylated hemoglobin level and red blood cell storage lesion in blood donors. Transfusion 2022; 62:663-674. [PMID: 35137967 DOI: 10.1111/trf.16815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Glycosylated hemoglobin (HbA1c), not routinely screened in blood donors, is associated with morphological, biochemical, and functional abnormalities of red blood cells (RBCs) and with enhanced oxidative stress. We aimed to explore HbA1c levels in blood donors and their effect on RBC storage. STUDY DESIGN AND METHODS An analytical cross-sectional study was conducted on 875 eligible blood donors aged 18-60 years from May 1, 2021, to August 30, 2021. Two selected groups of donors (HbA1c <6.5%, n = 10; HbA1c ≥ 6.5%, n = 10) exhibiting as similar as possible baseline values (such as age, sex, and living habits, etc.) were recruited for blood donation in leukoreduced CPDA-1 units. RBC morphological, biochemical, structural, and oxidative stress states were measured during 5-35 days of storage. RESULTS Elevated HbA1c prevalence was 37%, including 31.7% (277/875) in the prediabetes range (HbA1c 5.7%-6.4%) and 5.4% (47/875) in the diabetes range (HbA1c ≥ 6.5%). Age, body mass index (BMI), smoking, and alcohol consumption were the main factors influencing the HbA1c levels. During storage, high-HbA1c group had abnormal RBC morphology, impaired membrane function, and ion imbalance (higher mean corpuscular volume, distribution width, hemolysis rate, potassium ion efflux, and phosphatidylserine exposure) as compared with low HbA1c group. Additionally, RBC oxidative stress was significantly increased in donors with high HbA1c levels during 21-35 days. DISCUSSION Blood donors proportion with abnormal HbA1c levels was relatively high, and donor HbA1c levels may be associated with stored RBCs capacity. Our study provides new insights into the different effects of donor HbA1c levels on RBC storage lesions.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Blood Transfusion, Xiangya Second Hospital, Central South University, Changsha Province, China
| | - Kuiming Fang
- Department of Blood Quality Management, Yueyang Central Blood Bank, Yueyang City, Hunan Province, China
| | - Haibo Peng
- Department of Blood Quality Management, Yueyang Central Blood Bank, Yueyang City, Hunan Province, China
| | - Li He
- Department of Blood Transfusion, Xiangya Second Hospital, Central South University, Changsha Province, China
| | - Yongjun Wang
- Department of Blood Transfusion, Xiangya Second Hospital, Central South University, Changsha Province, China
| |
Collapse
|
17
|
Piechowicz J, Gamian A, Zwolińska D, Polak-Jonkisz D. Adenine Nucleotide Metabolites in Uremic Erythrocytes as Metabolic Markers of Chronic Kidney Disease in Children. J Clin Med 2021; 10:jcm10215208. [PMID: 34768727 PMCID: PMC8585019 DOI: 10.3390/jcm10215208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with multifaceted pathophysiological lesions including metabolic pathways in red blood cells (RBC). The aim of the study was to determine the concentration of adenine nucleotide metabolites, i.e., nicotinamide adenine dinucleotide (NAD)-oxidized form, nicotinamide adenine dinucleotide hydrate (NADH)-reduced form, nicotinic acid mononucleotide (NAMN), β-nicotinamide mononucleotide (NMN), nicotinic acid adenine dinucleotide (NAAD), nicotinic acid (NA) and nicotinamide (NAM) in RBC and to determine a relationship between NAD metabolites and CKD progression. Forty-eight CKD children and 33 age-matched controls were examined. Patients were divided into groups depending on the CKD stages (Group II-stage II, Group III- stage III, Group IV- stage IV and Group RRT children on dialysis). To determine the above-mentioned metabolites concentrations in RBC liquid chromatography-mass spectrometry was used. Results: the only difference between the groups was shown concerning NAD in RBC, although the values did not differ significantly from controls. The lowest NAD values were found in Group II (188.6 ± 124.49 nmol/mL, the highest in group IV (324.94 ± 63.06 nmol/mL. Between Groups II and IV, as well as III and IV, the differences were statistically significant (p < 0.032, p < 0.046 respectively). Conclusions. CKD children do not have evident abnormalities of RBC metabolism with respect to adenine nucleotide metabolites. The significant differences in erythrocyte NAD concentrations between CKD stages may suggest the activation of adaptive defense mechanisms aimed at erythrocyte metabolic stabilization. It seems that the implementation of RRT has a positive impact on RBC NAD metabolism, but further research performed on a larger population is needed to confirm it.
Collapse
Affiliation(s)
- Joanna Piechowicz
- Department of Medical Biochemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-556 Wroclaw, Poland;
| | - Danuta Zwolińska
- Department of Pediatric Nephrology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Dorota Polak-Jonkisz
- Department of Pediatric Nephrology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
18
|
Tzounakas VL, Anastasiadi AT, Valsami SI, Stamoulis KE, Papageorgiou EG, Politou M, Papassideri IS, Kriebardis AG, Antonelou MH. Osmotic hemolysis is a donor-specific feature of red blood cells under various storage conditions and genetic backgrounds. Transfusion 2021; 61:2538-2544. [PMID: 34146350 DOI: 10.1111/trf.16558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Transfusion research has recently focused on the discovery of red blood cell (RBC) storage capacity biomarkers and the elucidation of donor variation effects. This shift of focus can further strengthen personalization of transfusion therapy, by revealing probable links between donor biology, RBC storage lesion profile, and posttransfusion performance. STUDY DESIGN AND METHODS We performed a paired correlation analysis of osmotic fragility in freshly drawn RBCs and during cold storage in different preservative solutions at weekly intervals until unit's expiration date (n = 231), or following 24 h reconstitution in allogeneic plasma (n = 32) from healthy controls or transfusion-dependent beta-thalassemia patients. RESULTS We observed exceptional correlation profiles (r > 0.700, p < 10-5 in most cases) of RBC osmotic fragility in the ensemble of samples, as well as in subgroups characterized by distinct genetic backgrounds (sex, beta-thalassemia traits, glucose-6-phosphate dehydrogenase deficiency) and storage strategies (additive solutions, whole blood, RBC concentrates). The mean corpuscular fragility (MCF) of fresh and stored RBCs at each storage time significantly correlated with the MCF of stored RBCs measured at all subsequent time points of the storage period (e.g., MCF values of storage day 21 correlated with those of storage days 28, 35 and 42). A similar correlation profile was also observed between the osmotic hemolysis of fresh/stored RBCs before and following in vitro reconstitution in plasma from healthy controls or beta-thalassemia patients. CONCLUSION Our findings highlighted the potential of osmotic fragility to serve as a donor-signature on RBCs at every step of any individual transfusion chain (donor, blood product, and probably, recipient).
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Serena I Valsami
- Blood Bank and Hematology Laboratory, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | | | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna Politou
- Blood Bank and Hematology Laboratory, Aretaieion Hospital, School of Medicine, NKUA, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
19
|
D'Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G, Kleinman S, Lanteri M, Stone M, Busch MP, Zimring JC. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 2021; 106:1290-1302. [PMID: 32241843 PMCID: PMC8094095 DOI: 10.3324/haematol.2020.246603] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults.
Collapse
Affiliation(s)
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | | | - Julie A Reisz
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mark T Gladwin
- University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
20
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
21
|
Tzounakas VL, Anastasiadi AT, Stefanoni D, Cendali F, Bertolone L, Gamboni F, Dzieciatkowska M, Rousakis P, Vergaki A, Soulakis V, Tsitsilonis OE, Stamoulis K, Papassideri IS, Kriebardis ANG, D'Alessandro A, Antonelou MH. β-thalassemia minor is a beneficial determinant of red blood cell storage lesion. Haematologica 2021; 107:112-125. [PMID: 33730845 PMCID: PMC8719105 DOI: 10.3324/haematol.2020.273946] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/01/2022] Open
Abstract
Blood donor genetics and lifestyle affect the quality of red blood cell (RBC) storage. Heterozygotes for beta thalassemia (bThal+) constitute a non-negligible proportion of blood donors in the Mediterranean and other geographical areas. The unique hematological profile of bThal+ could affect the capacity of enduring storage stress, however, the storability of bThal+ RBC is largely unknown. In this study, RBC from 18 bThal+ donors were stored in the cold and profiled for primary (hemolysis) and secondary (phosphatidylserine exposure, potassium leakage, oxidative stress) quality measures, and metabolomics, versus sex- and age-matched controls. The bThal+ units exhibited better levels of storage hemolysis and susceptibility to lysis following osmotic, oxidative and mechanical insults. Moreover, bThal+ RBC had a lower percentage of surface removal signaling, reactive oxygen species and oxidative defects to membrane components at late stages of storage. Lower potassium accumulation and higher uratedependent antioxidant capacity were noted in the bThal+ supernatant. Full metabolomics analyses revealed alterations in purine and arginine pathways at baseline, along with activation of the pentose phosphate pathway and glycolysis upstream to pyruvate kinase in bThal+ RBC. Upon storage, substantial changes were observed in arginine, purine and vitamin B6 metabolism, as well as in the hexosamine pathway. A high degree of glutamate generation in bThal+ RBC was accompanied by low levels of purine oxidation products (IMP, hypoxanthine, allantoin). The bThal mutations impact the metabolism and the susceptibility to hemolysis of stored RBC, suggesting good post-transfusion recovery. However, hemoglobin increment and other clinical outcomes of bThal+ RBC transfusion deserve elucidation by future studies.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - Alkmini T Anastasiadi
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO
| | - Pantelis Rousakis
- Department of Biology, Section of Animal and Human Physiology, School of Science, NKUA, Athens
| | - Athina Vergaki
- Regional Blood Transfusion Center, "Agios Panteleimon" General Hospital of Nikea, Piraeus
| | - Vassilis Soulakis
- Regional Blood Transfusion Center, "Agios Panteleimon" General Hospital of Nikea, Piraeus
| | - Ourania E Tsitsilonis
- Department of Biology, Section of Animal and Human Physiology, School of Science, NKUA, Athens
| | | | - Issidora S Papassideri
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens
| | - A Nastasios G Kriebardis
- Department of Biomedical Science, School of Health and Caring Science, University of West Attica (UniWA), Egaleo
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, CO.
| | - Marianna H Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens (NKUA), Athens.
| |
Collapse
|
22
|
Alexander K, Hazegh K, Fang F, Sinchar D, Kiss JE, Page GP, D’Alessandro A, Kanias T. Testosterone replacement therapy in blood donors modulates erythrocyte metabolism and susceptibility to hemolysis in cold storage. Transfusion 2021; 61:108-123. [PMID: 33073382 PMCID: PMC7902463 DOI: 10.1111/trf.16141] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red blood cells (RBCs) derived from patients who receive testosterone replacement therapy (TRT) may be considered eligible for component production and transfusion. The aim of this study was to identify testosterone-dependent changes in RBC metabolism and to evaluate its impact on susceptibility to hemolysis during cold storage. STUDY DESIGN AND METHODS We characterized stored RBCs from two cohorts of TRT patients who were matched with control donors (no TRT) based upon sex, age, and ethnicity. We further evaluated the impact of testosterone deficiency (orchiectomy) on RBC metabolism in FVB/NJ mice. RBC metabolites were quantified by ultra-high-pressure liquid chromatography-mass spectrometry. RBC storage stability was determined in RBC units from TRT and controls by quantifying storage, osmotic, and oxidative hemolysis. RESULTS Orchiectomy in mice was associated with significant (P < 0.05) changes in RBC metabolism as compared with intact males including increased levels of acyl-carnitines, long-chain fatty acids (eg, docosapentaenoic acids), arginine, and dopamine. Stored RBCs from TRT patients exhibited higher levels of pentose phosphate pathway metabolites, glutathione, and oxidized purines (eg, hypoxanthine), suggestive of increased activation of antioxidant pathways in this group. Further analyses indicated significant changes in free fatty acids and acyl-carnitines in response to testosterone therapies. With regard to hemolysis, TRT was associated with enhanced susceptibility to osmotic hemolysis. Correlation analyses identified acyl-carnitines as significant modifiers of RBC predisposition to osmotic and oxidative hemolysis. CONCLUSIONS These observations provide new insights into testosterone-mediated changes in RBC metabolome and biology that may impact the storage capacity and posttransfusion efficacy of RBCs from TRT donors.
Collapse
Affiliation(s)
- Keisha Alexander
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | - Fang Fang
- RTI International, Research Triangle Park, North Carolina
| | - Derek Sinchar
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph E. Kiss
- Vitalant, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Vitalant Research Institute, Denver, Colorado
- Division of Hematology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Sex-related aspects of the red blood cell storage lesion. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 19:224-236. [PMID: 33085592 DOI: 10.2450/2020.0141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Several factors contribute to the manifestation of red blood cell (RBC) storage lesions, with one of the most interesting being the "donor variation effect". Since many haematological characteristics of blood donors are sex-dependent, sex hormones and their age-dependent variation may affect the storage profile of RBCs. MATERIALS AND METHODS Fresh blood from 200 healthy male and female donors underwent haematological, biochemical and physiological analysis. Three selected groups of donors (men, n=8; pre-menopausal women, n=8; and post-menopausal women, n=4) exhibiting as similar as possible baseline values were recruited for blood donation in leukoreduced CPD/SAGM units. RBC indices, haemolysis and propensity for haemolysis, reactive oxygen species (ROS) and plasma antioxidant capacity were measured bi-weekly. RESULTS Female blood was characterised by lower plasma antioxidant capacity and free haemoglobin (Hb) levels in vivo, in spite of the higher RBC osmotic fragility, compared to male blood. Comparatively low Hb concentration was also measured in stored RBCs from female donors, as in vivo. Mean corpuscular Hb (MCH), mean corpuscular Hb concentration (MCHC), and plasma antioxidant capacity were also lower in female donors throughout storage, even though baseline levels were equal to those of the male group. There was no difference in propensity of stored RBCs for haemolysis between male and female units but intracellular ROS levels were significantly lower in female RBCs. Increased end-of-storage extracellular potassium and recruitment of protein stress markers (clusterin, Hb) to the RBC membrane were observed in the units of post- vs pre-menopausal female donors at mid-storage onwards. DISCUSSION Donor's sex has an impact on Hb concentration and redox parameters of stored RBCs. In addition, menopause seems to promote RBC membrane remodelling, at least during prolonged storage. Our pilot study provides new insights on the different effects on RBC storage lesion according to sex.
Collapse
|
24
|
A Comparative Transcriptomics Approach to Analyzing the Differences in Cold Resistance in Pomacea canaliculata between Guangdong and Hunan. J Immunol Res 2020; 2020:8025140. [PMID: 32832573 PMCID: PMC7422425 DOI: 10.1155/2020/8025140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Pomacea canaliculata, known as an invasive freshwater snail, is also called a golden apple snail; its survival and expansion are greatly affected by temperature. In this study, high-throughput sequencing (RNA-seq) was used to perform comparative transcriptome analysis on the muscular tissue (G_M) of snails in Guangdong and Hunan. Differential gene screening was performed with FDR <0.05 and |log2FoldChange| >1 as the threshold, and a total of 1,368 differential genes were obtained (671 genes showed upregulation in snails from Guangdong, and 697 genes displayed upregulation in snails from Hunan). Fifteen genes were identified as candidate genes for the cold hardiness of Pomacea canaliculata. Among them, three genes were involved in energy metabolism (glycogen synthase, 1; DGK, 1; G6PD, 1); seven genes were involved in homeostasis regulation (HSP70, 2; BIP, 1; GPX, 1; GSTO 1, G6PD, 1; caspase-9, 1); two genes were involved in amino acid metabolism (glutamine synthetase, 1; PDK, 1); and four genes were involved in membrane metabolism (inositol-3-phosphate synthase, 1; Na+/K+-ATPase, 1; calcium-binding protein, 2). This study presents the molecular mechanisms for the cold hardiness of Pomacea canaliculata, which could provide a scientific basis for the forecast and prevention of harm from Pomacea canaliculata.
Collapse
|
25
|
Seghatchian J. The secrets of human stem cell-derived transfusable RBC for targeted large-scale production and clinical applications: A fresh look into what we need most and lessons to be learned. Transfus Apher Sci 2020; 59:102862. [PMID: 32620410 PMCID: PMC7320703 DOI: 10.1016/j.transci.2020.102862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blood transfusion, using the safest conventional blood bioproducts, is an irreplaceable part of substitution therapy. It is considered the most essential supportive clinical intervention aimed to restore the health of patients in need. Nevertheless, numerous unresolved problems are still associated with current blood substitution therapy. To alleviate our dependency on blood donors, many investigators have been focusing on the quest for stem cell-derived blood cells in line with major developments in the field of regenerative medicine. The main objective is to provide a safe and highly standardized universal cultured red cell concentrate [CRBC] for all clinical applications, regardless of blood groups. Currently, we are close to overcoming some of the main obstacles in culturing cells. This concise report is a prelude to the immortalized cell lines that are ready for in vivo clinical trials. It is only through the sharing of experimental ideas and knowledge-based strategies that we will be able to achieve such an enormous task and better understand ‘’the one for all concept’’ of CRBCs and their universal usage in all clinical settings.
Collapse
Affiliation(s)
- Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit / Inspection, London, UK.
| |
Collapse
|
26
|
Stefanoni D, Fu X, Reisz JA, Kanias T, Nemkov T, Page GP, Dumont L, Roubinian N, Stone M, Kleinman S, Busch M, Zimring JC, D'Alessandro A. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion 2020; 60:1160-1174. [PMID: 32385854 DOI: 10.1111/trf.15812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cigarette smoking is a frequent habit across blood donors (approx. 13% of the donor population), that could compound biologic factors and exacerbate oxidant stress to stored red blood cells (RBCs). STUDY DESIGN AND METHODS As part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, a total of 599 samples were sterilely drawn from RBC units stored under blood bank conditions at Storage Days 10, 23, and 42 days, before testing for hemolysis parameters and metabolomics. Quantitative measurements of nicotine and its metabolites cotinine and cotinine oxide were performed against deuterium-labeled internal standards. RESULTS Donors whose blood cotinine levels exceeded 10 ng/mL (14% of the tested donors) were characterized by higher levels of early glycolytic intermediates, pentose phosphate pathway metabolites, and pyruvate-to-lactate ratios, all markers of increased basal oxidant stress. Consistently, increased glutathionylation of oxidized triose sugars and lipid aldehydes was observed in RBCs donated by nicotine-exposed donors, which were also characterized by increased fatty acid desaturation, purine salvage, and methionine oxidation and consumption via pathways involved in oxidative stress-triggered protein damage-repair mechanisms. CONCLUSION RBCs from donors with high levels of nicotine exposure are characterized by increases in basal oxidant stress and decreases in osmotic hemolysis. These findings indicate the need for future clinical studies aimed at addressing the impact of smoking and other sources of nicotine (e.g., nicotine patches, snuff, vaping, secondhand tobacco smoke) on RBC storage quality and transfusion efficacy.
Collapse
Affiliation(s)
- Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado
| | | |
Collapse
|
27
|
Impact of G6PD status on red cell storage and transfusion outcomes. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 17:289-295. [PMID: 31385801 DOI: 10.2450/2019.0092-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
There are inter-individual differences in the quality of refrigerator-stored red blood cells (RBCs). Possible sources of these variations include nutritional and genetic factors. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzyme deficiency worldwide that affects the ability of RBCs to respond to oxidative stress, has been implicated as a genetic factor that affects the quality of stored RBCs. This review considers the literature concerning G6PD-deficient RBCs. It discusses RBC unit variables such as in vitro storage, 24-hour post-transfusion recovery (PTR), post-transfusion survival, and post-transfusion clinical outcomes.There are several differences in the in vitro storage characteristics between G6PD-deficient and G6PD-normal RBCs. Recent studies identified differences in the pathways related to glycolysis, purine metabolism, glutathione homeostasis, and fatty acid metabolism. In vitro experiments modelling the transfusion of G6PD-deficient RBCs, as well as autologous PTR studies in vivo, demonstrate increased haemolysis and decreased PTR, respectively, both indicators of a decrease in quality as compared to G6PD-normal RBCs. Finally, studies transfusing G6PD-deficient and G6PD-normal RBCs show that, in certain clinical settings, G6PD-deficient RBCs are associated with increased haemolysis.In summary, G6PD deficiency is associated with a decrease in the quality of RBCs after storage and its impact is often under-estimated. Understanding the underlying mechanisms by which G6PD deficiency affects RBC storage and transfusion outcomes may provide important clues to help optimise the future efficacy and safety of transfusions.
Collapse
|
28
|
Kanias T, Busch MP. Diversity in a blood bag: application of omics technologies to inform precision Transfusion Medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:258-262. [PMID: 31184580 PMCID: PMC6683866 DOI: 10.2450/2019.0056-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tamir Kanias
- Vitalant Research Institute, Denver, CO, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, CA, United States of America
| |
Collapse
|
29
|
Cohn CS, Allen ES, Cushing MM, Dunbar NM, Friedman DF, Goel R, Harm SK, Heddle N, Hopkins CK, Klapper E, Perumbeti A, Ramsey G, Raval JS, Schwartz J, Shaz BH, Spinella PC, Pagano MB. Critical developments of 2018: A review of the literature from selected topics in transfusion. A committee report from the AABB's Clinical Transfusion Medicine Committee. Transfusion 2019; 59:2733-2748. [PMID: 31148175 DOI: 10.1111/trf.15348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The AABB compiles an annual synopsis of the published literature covering important developments in the field of transfusion medicine. An abridged version of this work is being made available in TRANSFUSION, with the full-length report available as Appendix S1 (available as supporting information in the online version of this paper). STUDY DESIGN AND METHODS Papers published in late 2017 and 2018 are included, as well as earlier papers cited for background. Although this synopsis is comprehensive, it is not exhaustive, and some papers may have been excluded or missed. RESULTS The following topics are covered: "big data" and "omics" studies, emerging infections and testing, platelet transfusion and pathogen reduction, transfusion therapy and coagulation, transfusion approach to hemorrhagic shock and mass casualties, therapeutic apheresis, and chimeric antigen receptor T-cell therapy. CONCLUSION This synopsis may be a useful educational tool.
Collapse
Affiliation(s)
- Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth S Allen
- Department of Pathology, University of California, San Diego, California
| | - Melissa M Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - David F Friedman
- Blood Bank and Transfusion Medicine Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruchika Goel
- Division of Transfusion Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.,Division of Hematology/Oncology, Mississippi Valley Regional Blood Center, Springfield, Illinois
| | - Sarak K Harm
- University of Vermont Medical Center, Burlington, VT
| | - Nancy Heddle
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Ellen Klapper
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ajay Perumbeti
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Glenn Ramsey
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University, and, New York, New York
| | | | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University in St Louis School of Medicine, Saint Louis, Missouri
| | - Monica B Pagano
- Transfusion Medicine Division, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
31
|
Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:27-52. [PMID: 30653459 PMCID: PMC6343598 DOI: 10.2450/2019.0217-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) are a specialised organ that enabled the evolution of multicellular organisms by supplying a sufficient quantity of oxygen to cells that cannot obtain oxygen directly from ambient air via diffusion, thereby fueling oxidative phosphorylation for highly efficient energy production. RBCs have evolved to optimally serve this purpose by packing high concentrations of haemoglobin in their cytosol and shedding nuclei and other organelles. During their circulatory lifetimes in humans of approximately 120 days, RBCs are poised to transport oxygen by metabolic/redox enzymes until they accumulate damage and are promptly removed by the reticuloendothelial system. These elaborate evolutionary adaptions, however, are no longer effective when RBCs are removed from the circulation and stored hypothermically in blood banks, where they develop storage-induced damages ("storage lesions") that accumulate over the shelf life of stored RBCs. This review attempts to provide a comprehensive view of the literature on the subject of RBC storage lesions and their purported clinical consequences by incorporating the recent exponential growth in available data obtained from "omics" technologies in addition to that published in more traditional literature. To summarise this vast amount of information, the subject is organised in figures with four panels: i) root causes; ii) RBC storage lesions; iii) physiological effects; and iv) reported outcomes. The driving forces for the development of the storage lesions can be roughly classified into two root causes: i) metabolite accumulation/depletion, the target of various interventions (additive solutions) developed since the inception of blood banking; and ii) oxidative damages, which have been reported for decades but not addressed systemically until recently. Downstream physiological consequences of these storage lesions, derived mainly by in vitro studies, are described, and further potential links to clinical consequences are discussed. Interventions to postpone the onset and mitigate the extent of the storage lesion development are briefly reviewed. In addition, we briefly discuss the results from recent randomised controlled trials on the age of stored blood and clinical outcomes of transfusion.
Collapse
Affiliation(s)
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Faculté de Biologie et de Médicine, Université de Lausanne, Lausanne, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado, Denver, CO, United States of America
| |
Collapse
|
32
|
Abonnenc M, Tissot JD, Prudent M. General overview of blood products in vitro quality: Processing and storage lesions. Transfus Clin Biol 2018; 25:269-275. [PMID: 30241785 DOI: 10.1016/j.tracli.2018.08.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Blood products are issued from blood collection. Collected blood is immediately mixed with anticoagulant solutions that immediately induce chemical and/or biochemical modifications. Collected blood is then transformed into different blood products according to various steps of fabrication. All these steps induce either reversible or irreversible "preparation-related" lesions that combine with "storage-related" lesions. This short paper aims to provide an overview of the alterations that are induced by the "non-physiological" processes used to prepare blood products that are used in clinical practice.
Collapse
Affiliation(s)
- Mélanie Abonnenc
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland
| | - Jean-Daniel Tissot
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
33
|
Tzounakas VL, Valsami SI, Kriebardis AG, Papassideri IS, Seghatchian J, Antonelou MH. Red cell transfusion in paediatric patients with thalassaemia and sickle cell disease: Current status, challenges and perspectives. Transfus Apher Sci 2018; 57:347-357. [PMID: 29880248 DOI: 10.1016/j.transci.2018.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notwithstanding the high safety level of the currently available blood for transfusion and the decreasing frequency of transfusion-related complications, administration of labile blood products to paediatric patients still poses unique challenges and considerations. The incidence of thalassaemia and sickle cell disease in the paediatric population may be high enough under specific racial and geographical contexts. Red cell transfusion is the cornerstone of β-thalassaemia treatment and one of the most effective ways to prevent or correct specific acute and chronic complications of sickle cell disease. However, this life-saving strategy comes with its own complications, such as additional iron overload, alloimmunization and haemolytic reactions, among others. In paediatrics, the dependency of the transfusion outcome upon disease and other recipient characteristics is more prominent compared with the adults, owing to differences in developmental maturity and physiology that render them more susceptible to common risks, exacerbate the host response to transfused cells, and modify the type or the clinical severity of the transfusion-related morbidity. The adverse branch of red cell transfusion is likely the overall effect of several factors acting synergistically to shape the clinical phenotype of this therapy, including inherent donor/blood unit variables, like antigenicity, red cell deformability and extracellular vesicles, as well as recipient variables, such as history of alloimmunization and inflammation level at time of transfusion. This review focuses on paediatric patients with β-thalassaemia and sickle cell disease as a recipient group with distinct transfusion-related characteristics, and introduces new concepts for consideration, not adequately studied and elucidated so far.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Serena I Valsami
- Department of Blood Transfusion, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
34
|
Tzounakas VL, Gevi F, Georgatzakou HT, Zolla L, Papassideri IS, Kriebardis AG, Rinalducci S, Antonelou MH. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency. Front Med (Lausanne) 2018; 5:16. [PMID: 29459896 PMCID: PMC5807665 DOI: 10.3389/fmed.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. METHODS The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. RESULTS Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. CONCLUSION Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.
Collapse
Affiliation(s)
- Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hara T. Georgatzakou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|