1
|
Sankaramurthy P, Palaniswamy R, Sellamuthu S, Chelladurai F, Murugadhas A. Lung disease prediction based on CT images using REInf-net and world cup optimization based BI-LSTM classification. NETWORK (BRISTOL, ENGLAND) 2024:1-34. [PMID: 39252464 DOI: 10.1080/0954898x.2024.2392782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/11/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
A major global source of disability as well as mortality is respiratory illness. Though visual evaluation of computed tomography (CT) images and chest radiographs are a primary diagnostic for respiratory illnesses, it is limited in its ability to assess severity and predict patient outcomes due to low specificity and fundamental infectious organisms. In order to address these problems, world cup optimization-based Bi-LSTM classification and lung disease prediction on CT images using REINF-net were employed. To enhance the image quality, the gathered lung CT images are pre-processed using Lucy Richardson and CLAHE algorithms. For the purpose of lung infection segmentation, the pre-processed images are segmented using the REInf-net. The GLRLM method is used to extract features from the segmented images. In order to predict lung disease in CT images, the extracted features are trained using the Bi-LSTM based on world cup optimization. Accuracy, Precision, recall, Error and Specificity for the proposed model are 97.8%, 96.7%, 96.7%, 2.2% and 98.3%. These evaluated values are contrasted with the results of existing methods like WCO-BiLSTM, MLP, CNN and LSTM. Finally, the Lung disease prediction based on CT images using REINF-Net and world cup optimization based BI-LSTM classification performs better than the existing model.
Collapse
Affiliation(s)
- Padmini Sankaramurthy
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Renukadevi Palaniswamy
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Suseela Sellamuthu
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
| | - Fancy Chelladurai
- Department of Networking and Communications, School of Computing, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Anand Murugadhas
- Department of Networking and Communications, School of Computing, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| |
Collapse
|
2
|
Zhao R, Zhang YW, Guo JC, Qiao J, Song S, Zhang TT, Zhang HY, Zhang SX. Genetic evidence reveals a causal relationship between rheumatoid arthritis and interstitial lung disease. Front Genet 2024; 15:1395315. [PMID: 38808332 PMCID: PMC11130360 DOI: 10.3389/fgene.2024.1395315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Background/purpose: Previous epidemiological studies have associated interstitial lung disease (ILD) with rheumatoid arthritis (RA), yet the causality of this relationship remains uncertain. This study aimed to investigate the genetic causal link between ILD and RA. Methods: Genome-wide association study (GWAS) statistics for ILD and RA were collected from public datasets. Relevant single-nucleotide polymorphisms (SNPs) were selected by executing quality control steps from the GWAS summary results. A two-sample bidirectional Mendelian randomization (MR) analysis was performed to assess the causal relationship between the two conditions. The MR analysis primarily used the inverse variance weighting (IVW), weighted median (WM), and MR-Egger regression methods. Sensitivity analyses, including MR-Egger, leave-one-out, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), were conducted to evaluate the heterogeneity and pleiotropy. Replication analyses using Asian datasets were also conducted to enhance the robustness of our findings. Results: In the European population, RA was found to increase the risk of ILD by 9.6% (OR: 1.096, 95% CI: 1.023-1.174, p = 0.009). Conversely, ILD was associated with a 12.8% increased risk of RA (OR: 1.128, 95% CI: 1.013-1.256, p = 0.029). Replication analyses from Asian GWAS further supported these findings, particularly the increased risk of ILD attributable to RA (OR: 1.33, 95% CI: 1.18-1.49, p-value <0.001). Conclusion: Our findings underscore the clinical importance of screening for ILD in RA patients and suggest that effective management of RA could significantly benefit ILD patients. The potential applicability of novel RA treatments to ILD warrants further exploration. Additionally, racial disparities in the manifestation of these diseases should not be overlooked, as they may offer new perspectives for targeted therapies in diverse populations.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yi-Wen Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jin-Cheng Guo
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jun Qiao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Shan Song
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Ting-Ting Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - He-Yi Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| |
Collapse
|
3
|
Glenn LM, Troy LK, Corte TJ. Novel diagnostic techniques in interstitial lung disease. Front Med (Lausanne) 2023; 10:1174443. [PMID: 37188089 PMCID: PMC10175799 DOI: 10.3389/fmed.2023.1174443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
Collapse
Affiliation(s)
- Laura M. Glenn
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Laura M. Glenn,
| | - Lauren K. Troy
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Tamera J. Corte
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Alonso-Gonzalez A, Tosco-Herrera E, Molina-Molina M, Flores C. Idiopathic pulmonary fibrosis and the role of genetics in the era of precision medicine. Front Med (Lausanne) 2023; 10:1152211. [PMID: 37181377 PMCID: PMC10172674 DOI: 10.3389/fmed.2023.1152211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, rare progressive lung disease, characterized by lung scarring and the irreversible loss of lung function. Two anti-fibrotic drugs, nintedanib and pirfenidone, have been demonstrated to slow down disease progression, although IPF mortality remains a challenge and the patients die after a few years from diagnosis. Rare pathogenic variants in genes that are involved in the surfactant metabolism and telomere maintenance, among others, have a high penetrance and tend to co-segregate with the disease in families. Common recurrent variants in the population with modest effect sizes have been also associated with the disease risk and progression. Genome-wide association studies (GWAS) support at least 23 genetic risk loci, linking the disease pathogenesis with unexpected molecular pathways including cellular adhesion and signaling, wound healing, barrier function, airway clearance, and innate immunity and host defense, besides the surfactant metabolism and telomere biology. As the cost of high-throughput genomic technologies continuously decreases and new technologies and approaches arise, their widespread use by clinicians and researchers is efficiently contributing to a better understanding of the pathogenesis of progressive pulmonary fibrosis. Here we provide an overview of the genetic factors known to be involved in IPF pathogenesis and discuss how they will continue to further advance in this field. We also discuss how genomic technologies could help to further improve IPF diagnosis and prognosis as well as for assessing genetic risk in unaffected relatives. The development and validation of evidence-based guidelines for genetic-based screening of IPF will allow redefining and classifying this disease relying on molecular characteristics and contribute to the implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Aitana Alonso-Gonzalez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Tosco-Herrera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, IDIBELL, Barcelona, Spain
- Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- *Correspondence: Carlos Flores,
| |
Collapse
|
5
|
Mota PC, Soares ML, Vasconcelos CD, Ferreira AC, Lima BA, Manduchi E, Moore JH, Melo N, Novais-Bastos H, Pereira JM, Guimarães S, Moura CS, Marques JA, Morais A. Predictive value of common genetic variants in idiopathic pulmonary fibrosis survival. J Mol Med (Berl) 2022; 100:1341-1353. [DOI: 10.1007/s00109-022-02242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
6
|
Munis AM, Wright B, Jackson F, Lockstone H, Hyde SC, Green CM, Gill DR. RNA-seq analysis of the human surfactant air-liquid interface culture reveals alveolar type II cell-like transcriptome. Mol Ther Methods Clin Dev 2022; 24:62-70. [PMID: 34977273 PMCID: PMC8688965 DOI: 10.1016/j.omtm.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Understanding pulmonary diseases requires robust culture models that are reproducible, sustainable in long-term culture, physiologically relevant, and suitable for assessment of therapeutic interventions. Primary human lung cells are physiologically relevant but cannot be cultured in vitro long term and, although engineered organoids are an attractive choice, they do not phenotypically recapitulate the lung parenchyma; overall, these models do not allow for the generation of reliable disease models. Recently, we described a new cell culture platform based on H441 cells that are grown at the air-liquid interface to produce the SALI culture model, for studying and correcting the rare interstitial lung disease surfactant protein B (SPB) deficiency. Here, we report the characterization of the effects of SALI culture conditions on the transcriptional profile of the constituent H441 cells. We further analyze the transcriptomics of the model in the context of surfactant metabolism and the disease phenotype through SFTPB knockout SALI cultures. By comparing the gene expression profile of SALI cultures with that of human lung parenchyma obtained via single-cell RNA sequencing, we found that SALI cultures are remarkably similar to human alveolar type II cells, implying clinical relevance of the SALI culture platform as a non-diseased human lung alveolar cell model.
Collapse
Affiliation(s)
- Altar M. Munis
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Benjamin Wright
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Frederic Jackson
- Clinical BioManufacturing Facility, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK
| | - Helen Lockstone
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Stephen C. Hyde
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Catherine M. Green
- Clinical BioManufacturing Facility, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK
- Chromosome Dynamics, The Wellcome Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Deborah R. Gill
- Gene Medicine Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Untangling 11p15.5 for Chronic Hypersensitivity Pneumonitis. Chest 2022; 161:307-308. [DOI: 10.1016/j.chest.2021.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
|
8
|
Stark C, Koskenvuo JW, Nykänen A, Seppälä EH, Myllykangas S, Lemström K, Raivio P. Monogenic gene variants in lung transplant recipients with usual interstitial pneumonia. ERJ Open Res 2022; 8:00583-2021. [PMID: 35083318 PMCID: PMC8784759 DOI: 10.1183/23120541.00583-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Aim The prevalence of monogenic disease-causing gene variants in lung transplant recipients with idiopathic pulmonary fibrosis is not fully known. Their impact on clinical outcomes before and after transplantation requires more evidence. Patients and methods We retrospectively performed sequence analysis of genes associated with pulmonary fibrosis in a cohort of 23 patients with histologically confirmed usual interstitial pneumonia that had previously undergone double lung transplantation. We evaluated the impact of confirmed molecular diagnoses on disease progression, clinical outcomes and incidence of acute rejection or chronic lung allograft dysfunction after transplantation. Results 15 patients out of 23 (65%) had a variant in a gene associated with interstitial lung disease. 11 patients (48%) received a molecular diagnosis, of which nine involved genes for telomerase function. Five diagnostic variants were found in the gene for Telomerase reverse transcriptase. Two of these variants, p.(Asp684Gly) and p.(Arg774*), seemed to be enriched in Finnish lung transplant recipients. Disease progression and the incidence of acute rejection and chronic lung allograft dysfunction was similar between patients with telomere-related disease and the rest of the study population. The incidence of renal or bone marrow insufficiency or skin malignancies did not differ between the groups. Conclusion Genetic variants are common in lung transplant recipients with pulmonary fibrosis and are most often related to telomerase function. A molecular diagnosis for telomeropathy does not seem to impact disease progression or the risk of complications or allograft dysfunction after transplantation. A molecular diagnosis is common in lung transplant recipients with usual interstitial pneumonia and frequently reveals variants in genes related to telomerase function. This finding is not associated with increased risk of allograft dysfunction.https://bit.ly/30ucMQy
Collapse
|
9
|
Albera C, Verri G, Sciarrone F, Sitia E, Mangiapia M, Solidoro P. Progressive Fibrosing Interstitial Lung Diseases: A Current Perspective. Biomedicines 2021; 9:biomedicines9091237. [PMID: 34572422 PMCID: PMC8465039 DOI: 10.3390/biomedicines9091237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a large and diverse group of rare and chronic respiratory disorders, with idiopathic pulmonary fibrosis (IPF) being the most common and best-studied member. Increasing interest in fibrosis as a therapeutic target and the appreciation that fibrotic mechanisms may be a treatable target of IPF prompted the development and subsequent approval of the antifibrotics, pirfenidone and nintedanib. The management of ILDs has changed considerably following an understanding that IPF and some ILDs share similar disease behavior of progressive fibrosis, termed “progressive fibrosing phenotype”. Indeed, antifibrotic treatment has shown to be beneficial in ILDs characterized by the progressive fibrosing phenotype. This narrative review summarizes current knowledge in the field of progressive fibrosing ILDs. Here, we discuss the clinical characteristics and pathogenesis of lung fibrosis and highlight relevant literature concerning the mechanisms underlying progressive fibrosing ILDs. We also summarize current diagnostic approaches and the available treatments of progressive fibrosing ILDs and address the optimization of treating progressive fibrosing ILDs with antifibrotics in clinical practice.
Collapse
Affiliation(s)
- Carlo Albera
- Department of Medical Sciences, School of Medicine, University of Turin, SC Pneumologia U, 10124 Turin, Italy; (F.S.); (E.S.); (P.S.)
- Correspondence: or carlo.albera.@yahoo.it; Tel.: +39-3356376598
| | - Giulia Verri
- Ciità della Salute e della Scienza, Molinette Hospital, SC Pneumologia U, 10124 Turin, Italy; (G.V.); (M.M.)
| | - Federico Sciarrone
- Department of Medical Sciences, School of Medicine, University of Turin, SC Pneumologia U, 10124 Turin, Italy; (F.S.); (E.S.); (P.S.)
| | - Elena Sitia
- Department of Medical Sciences, School of Medicine, University of Turin, SC Pneumologia U, 10124 Turin, Italy; (F.S.); (E.S.); (P.S.)
| | - Mauro Mangiapia
- Ciità della Salute e della Scienza, Molinette Hospital, SC Pneumologia U, 10124 Turin, Italy; (G.V.); (M.M.)
| | - Paolo Solidoro
- Department of Medical Sciences, School of Medicine, University of Turin, SC Pneumologia U, 10124 Turin, Italy; (F.S.); (E.S.); (P.S.)
| |
Collapse
|
10
|
Liu L, Liu YJ, Guo T, Luo H. A novel variant of SFTPA2 in a Han Chinese family with interstitial lung disease and lung cancer. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1977722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Lv Liu
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yi-Jie Liu
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Ting Guo
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Hong Luo
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
11
|
Seixas S, Kolbe AR, Gomes S, Sucena M, Sousa C, Vaz Rodrigues L, Teixeira G, Pinto P, Tavares de Abreu T, Bárbara C, Semedo J, Mota L, Carvalho AS, Matthiesen R, Marques PI, Pérez-Losada M. Comparative analysis of the bronchoalveolar microbiome in Portuguese patients with different chronic lung disorders. Sci Rep 2021; 11:15042. [PMID: 34294826 PMCID: PMC8298389 DOI: 10.1038/s41598-021-94468-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
The lung is inhabited by a diverse microbiome that originates from the oropharynx by a mechanism of micro-aspiration. Its bacterial biomass is usually low; however, this condition shifts in lung cancer (LC), chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD). These chronic lung disorders (CLD) may coexist in the same patient as comorbidities and share common risk factors, among which the microbiome is included. We characterized the microbiome of 106 bronchoalveolar lavages. Samples were initially subdivided into cancer and non-cancer and high-throughput sequenced for the 16S rRNA gene. Additionally, we used a cohort of 25 CLD patients where crossed comorbidities were excluded. Firmicutes, Proteobacteria and Bacteroidetes were the most prevalent phyla independently of the analyzed group. Streptococcus and Prevotella were associated with LC and Haemophilus was enhanced in COPD versus ILD. Although no significant discrepancies in microbial diversity were observed between cancer and non-cancer samples, statistical tests suggested a gradient across CLD where COPD and ILD displayed the highest and lowest alpha diversities, respectively. Moreover, COPD and ILD were separated in two clusters by the unweighted UniFrac distance (P value = 0.0068). Our results support the association of Streptoccocus and Prevotella with LC and of Haemophilus with COPD, and advocate for specific CLD signatures.
Collapse
Affiliation(s)
- Susana Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.
| | - Allison R Kolbe
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Sílvia Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Maria Sucena
- Pneumology Department, Centro Hospitalar de São João (CHSJ), Porto, Portugal
| | - Catarina Sousa
- Pneumology Department, Centro Hospitalar de São João (CHSJ), Porto, Portugal
| | - Luís Vaz Rodrigues
- Department of Pneumology, Unidade Local de Saúde da Guarda (USLGuarda), Guarda, Portugal
| | - Gilberto Teixeira
- Department of Pneumology, Centro Hospitalar Do Baixo Vouga (CHBV), Aveiro, Portugal
| | - Paula Pinto
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Tavares de Abreu
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Cristina Bárbara
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Júlio Semedo
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Leonor Mota
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Isabel Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Unclassifiable interstitial lung disease (ILD) comprises a subset of ILDs which cannot be classified according to the current diagnostic framework. This is a likely a heterogeneous group of diseases rather than a single entity and it is poorly defined and hence problematic for prognosis and therapy. RECENT FINDINGS With increased treatment options for progressive fibrosing ILD it is increasingly relevant to correctly categorise ILD. SUMMARY This review article will summarise the definition and reasons for a diagnosis of unclassifiable ILD, the current management options and possible future approaches to improve diagnosis and differentiation within this broad subset. Finally, we will describe the implications of the labelling of unclassifiable ILD in clinical practice and research and whether the term 'unclassified' should be used, implying a less definitive diagnosis.
Collapse
|
13
|
Telomeres in Interstitial Lung Disease. J Clin Med 2021; 10:jcm10071384. [PMID: 33808277 PMCID: PMC8037770 DOI: 10.3390/jcm10071384] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Interstitial lung diseases (ILD) encompass a group of conditions involving fibrosis and/or inflammation of the pulmonary parenchyma. Telomeres are repetitive DNA sequences at chromosome ends which protect against genome instability. At each cell division, telomeres shorten, but the telomerase complex partially counteracts progressive loss of telomeres by catalysing the synthesis of telomeric repeats. Once critical telomere shortening is reached, cell cycle arrest or apoptosis are triggered. Telomeres progressively shorten with age. A number of rare genetic mutations have been identified in genes encoding for components of the telomerase complex, including telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC), in familial and, less frequently, in sporadic fibrotic ILDs. Defects in telomerase result in extremely short telomeres. More rapidly progressive disease is observed in fibrotic ILD patients with telomere gene mutations, regardless of underlying diagnosis. Associations with common single nucleotide polymorphisms in telomere related genes have also been demonstrated for various ILDs. Shorter peripheral blood telomere lengths compared to age-matched healthy individuals are found in a proportion of patients with fibrotic ILDs, and in idiopathic pulmonary fibrosis (IPF) and fibrotic hypersensitivity pneumonitis (HP) have been linked to worse survival, independently of disease severity. Greater susceptibility to immunosuppressant-induced side effects in patients with short telomeres has been described in patients with IPF and with fibrotic HP. Here, we discuss recent evidence for the involvement of telomere length and genetic variations in the development, progression, and treatment of fibrotic ILDs.
Collapse
|
14
|
Crespo A, Alfaro T, Somogyi V, Kreuter M. Updates in using a molecular classifier to identify usual interstitial pneumonia in conventional transbronchial lung biopsy samples. Breathe (Sheff) 2021; 16:200067. [PMID: 33447271 PMCID: PMC7792826 DOI: 10.1183/20734735.0067-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most common fibrosing interstitial lung disease (ILD) is idiopathic pulmonary fibrosis (IPF), with an incidence of 14–60 cases per 100 000 inhabitants per year in North America [1] and 3–9 cases per 100 000 per year in Europe [2]. IPF is a chronic, progressive fibrosing interstitial lung disease characterised by continued scarring of the lung parenchyma and associated with a steady worsening of respiratory symptoms, quality of life and pulmonary function, ultimately leading to death [1, 3], and a median survival of 3–5 years from the time of diagnosis [4, 5]. A precise diagnosis of the underlying ILD entity is essential for prognostication and choice of therapy as treatments differ between ILD subtypes, including that some drugs may be detrimental to an IPF patient. However, the diagnosis of ILD is sometimes difficult, partly imprecise, and frequently characterised by delay, misdiagnosis, use of costly and invasive procedures, and high use of healthcare resources. A molecular classifier using a machine-learning algorithm based on genomic data could provide an objective method to aid clinicians and multidisciplinary teams to establish the diagnosis of IPF in less-invasive transbronchial lung biopsy sampleshttps://bit.ly/2QLdWim
Collapse
Affiliation(s)
- Andrea Crespo
- Pneumology Service, Rio Hortega University Hospital, Valladolid, Spain
| | - Tiago Alfaro
- Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vivien Somogyi
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Germany and German Center for Lung Research (DZL), Heidelberg, Germany.,Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, Germany and German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
15
|
Fan Y, Xu W, Wang Y, Wang Y, Yu S, Ye Q. Association of occupational dust exposure with combined chronic obstructive pulmonary disease and pneumoconiosis: a cross-sectional study in China. BMJ Open 2020; 10:e038874. [PMID: 32907907 PMCID: PMC7482476 DOI: 10.1136/bmjopen-2020-038874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Occupational dust exposure may induce various lung diseases, including pneumoconiosis and chronic obstructive pulmonary disease (COPD). The features of combined COPD and pneumoconiosis have not been well described, and this may hamper the management. This study aimed to describe the prevalence and characteristics as well as the risk factors of the combined diseases. DESIGN A cross-sectional study. SETTING AND PARTICIPANTS 758 patients with pneumoconiosis were recruited at a single-medical centre. Of these, 675 patients with pneumoconiosis, including asbestosis, silicosis, coal workers' pneumoconiosis and other pneumoconiosis, was eligible for analysis. PRIMARY OUTCOME MEASURES COPD was diagnosed based on clinical features and/or history of exposure to risk factors and post bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio <0.7. Clinical data were collected from predesigned medical reports. The patients underwent both chest radiograph and high-resolution CT scans. Risk factors for combined COPD and pneumoconiosis were analysed using regression analysis. RESULTS COPD prevalence overall was 32.7% (221/675) and was the highest in silicosis (84/221) and coal workers' pneumoconiosis (100/221). COPD prevalence increased with smoking pack-years, dust exposure duration and pneumoconiosis stage. Patients with combined diseases had lower body mass index, higher smoking index and worse pulmonary function. Risk factors for combined diseases included heavy smoking, silica or coal exposure and advanced pneumoconiosis. The interaction between dust exposure and smoking in COPD was also identified. The risk of combined COPD significantly increased with heavy smoking and silica or coal exposure (OR 5.49, 95% CI 3.04 to 9.93, p<0.001). CONCLUSIONS COPD is highly prevalent in patients with pneumoconiosis, especially patients with silicosis and coal workers' pneumoconiosis. Occupational dust exposure as well as heavy smoking is associated with an increased risk of combined COPD and pneumoconiosis, which demands an effective preventive intervention.
Collapse
Affiliation(s)
- Yali Fan
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenjing Xu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuanying Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yiran Wang
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiwen Yu
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Nathan N, Berdah L, Delestrain C, Sileo C, Clement A. Interstitial lung diseases in children. Presse Med 2020; 49:103909. [PMID: 32563946 DOI: 10.1016/j.lpm.2019.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Interstitial lung disease (ILD) in children (chILD) is a heterogeneous group of rare respiratory disorders that are mostly chronic and associated with high morbidity and mortality. The pathogenesis of the various chILD is complex and the diseases share common features of inflammatory and fibrotic changes of the lung parenchyma that impair gas exchanges. The etiologies of chILD are numerous. In this review, we chose to classify them as ILD related to exposure/environment insults, ILD related to systemic and immunological diseases, ILD related to primary lung parenchyma dysfunctions and ILD specific to infancy. A growing part of the etiologic spectrum of chILD is being attributed to molecular defects. Currently, the main genetic mutations associated with chILD are identified in the surfactant genes SFTPA1, SFTPA2, SFTPB, SFTPC, ABCA3 and NKX2-1. Other genetic contributors include mutations in MARS, CSF2RA and CSF2RB in pulmonary alveolar proteinosis, and mutations in TMEM173 and COPA in specific auto-inflammatory forms of chILD. However, only few genotype-phenotype correlations could be identified so far. Herein, information is provided about the clinical presentation and the diagnosis approach of chILD. Despite improvements in patient management, the therapeutic strategies are still relying mostly on corticosteroids although specific therapies are emerging. Larger longitudinal cohorts of patients are being gathered through ongoing international collaborations to improve disease knowledge and targeted therapies. Thus, it is expected that children with ILD will be able to reach the adulthood transition in a better condition.
Collapse
Affiliation(s)
- Nadia Nathan
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France
| | - Laura Berdah
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France
| | - Céline Delestrain
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France
| | - Chiara Sileo
- Radiology department, AP-HP, Trousseau hospital, 75012 Paris, France
| | - Annick Clement
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France.
| |
Collapse
|
17
|
Wang Y, Xiao H, Zhao F, Li H, Gao R, Yan B, Ren J, Yang J. Decrypting the crosstalk of noncoding RNAs in the progression of IPF. Mol Biol Rep 2020; 47:3169-3179. [PMID: 32180083 DOI: 10.1007/s11033-020-05368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically summarized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound to provide us with new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Krauss E, Gehrken G, Drakopanagiotakis F, Tello S, Dartsch RC, Maurer O, Windhorst A, von der Beck D, Griese M, Seeger W, Guenther A. Clinical characteristics of patients with familial idiopathic pulmonary fibrosis (f-IPF). BMC Pulm Med 2019; 19:130. [PMID: 31319833 PMCID: PMC6637501 DOI: 10.1186/s12890-019-0895-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/11/2019] [Indexed: 11/29/2022] Open
Abstract
Background The aim of this study was to analyze the relative frequency, clinical characteristics, disease onset and progression in f-IPF vs. sporadic IPF (s-IPF). Methods Familial IPF index patients and their family members were recruited into the European IPF registry/biobank (eurIPFreg) at the Universities of Giessen and Marburg (UGMLC). Initially, we employed wide range criteria of f-IPF (e.g. relatives who presumably died of some kind of parenchymal lung disease). After narrowing down the search to occurrence of idiopathic interstitial pneumonia (IIP) in at least one first grade relative, 28 index patients were finally identified, prospectively interviewed and examined. Their family members were phenotyped with establishment of pedigree charts. Results Within the 28 IPF families, overall 79 patients with f-IPF were identified. In the same observation period, 286 f-IIP and s-IIP patients were recruited into the eurIPFreg at our UGMLC sites, corresponding to a familial versus s-IPF of 9.8%. The both groups showed no difference in demographics (61 vs. 79% males), smoking history, and exposure to any environmental triggers known to cause lung fibrosis. The f-IPF group differed by an earlier age at the onset of the disease (55.4 vs. 63.2 years; p < 0.001). On average, the f-IPF patients presented a significantly milder extent of functional impairment at the time point of inclusion vs. the s-IPF group (FVC 75% pred. vs. FVC 62% pred., p = 0.011). In contrast, the decline in FVC was found to be faster in the f-IPF vs. the s-IPF group (4.94% decline in 6 months in f-IPF vs. 2.48% in s-IPF, p = 0.12). The average age of death in f-IPF group was 67 years vs. 71.8 years in s-IPF group (p = 0.059). The f-IIP group displayed diverse inheritance patterns, mostly autosomal-dominant with variable penetrance. In the f-IPF, the younger generations showed a tendency for earlier manifestation of IPF vs. the older generation (58 vs. 66 years, p = 0.013). Conclusions The 28 f-IPF index patients presented an earlier onset and more aggressive natural course of the disease. The disease seems to affect consecutive generations at a younger age. Trial registration Nr. NCT02951416http://www.www.clinicaltrials.gov
Collapse
Affiliation(s)
- Ekaterina Krauss
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany.,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
| | - Godja Gehrken
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany.,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
| | - Fotios Drakopanagiotakis
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany.,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
| | - Silke Tello
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany.,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
| | - Ruth C Dartsch
- Agaplesion Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Olga Maurer
- Agaplesion Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany
| | - Anita Windhorst
- Department of Medical Statistics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Daniel von der Beck
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany.,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany
| | - Matthias Griese
- Children University Hospital, Campus Hauner, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany.,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), European IPF Registry (eurIPFreg), Klinikstrasse 36, 35392, Giessen, Germany. .,European IPF Registry & Biobank (eurIPFreg), Giessen, Germany. .,Cardio-Pulmonary Institute, Giessen, Germany. .,Agaplesion Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany.
| |
Collapse
|
19
|
Inchingolo R, Varone F, Sgalla G, Richeldi L. Existing and emerging biomarkers for disease progression in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2018; 13:39-51. [DOI: 10.1080/17476348.2019.1553620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Inchingolo
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Varone
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Sgalla
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Pulmonary Medicine Unit, Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|