1
|
Crihan M, Alexa AL, Valean D, Ionescu D. Continuous Non-Invasive Hemodynamic Monitoring in Cirrhotic Patients-Friend or Foe? MEDICINA (KAUNAS, LITHUANIA) 2025; 61:536. [PMID: 40142347 PMCID: PMC11943466 DOI: 10.3390/medicina61030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Liver cirrhosis leads to significant hemodynamic changes, particularly portal hypertension and a hyperdynamic circulatory state. Traditional invasive methods for hemodynamic monitoring, while accurate, carry risks such as infection and hemorrhage in a patient predisposed to these conditions. This study evaluates the accuracy of non-invasive continuous hemodynamic monitoring compared to a minimally invasive method in patients with decompensated liver cirrhosis. Materials and Materials and Methods: The study enrolled 51 patients with decompensated liver cirrhosis requiring continuous hemodynamic monitoring in the ICU. Patients underwent simultaneous monitoring via the minimally invasive FloTrac system and continuous non-invasive ClearSight sensor over 24 h, with measurements registered at 6 h intervals. Hemodynamic parameters measured included cardiac output (CO), cardiac index (CI), stroke volume (SV), stroke volume variation (SVV), systemic vascular resistance (SVR), and mean arterial pressure (MAP). Results: Significant discrepancies were observed between the two monitoring methods for most parameters, particularly CO, CI, and MAP, at most time intervals. However, SVV measurements showed no significant differences, indicating similar efficacy in assessing fluid responsiveness between the devices. Conclusions: The ClearSight system, although a valuable non-invasive alternative, demonstrated lower accuracy compared to the FloTrac system for hemodynamic measurements in patients with decompensated liver cirrhosis. Its effectiveness in assessing fluid responsiveness, particularly by SVV, suggests it could play a role in the monitoring of these patients, especially when invasive techniques have increased risks.
Collapse
Affiliation(s)
- Mirela Crihan
- 1st Department of Anesthesia and Intensive Care, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (M.C.)
- Research Association in Anesthesia and Intensive Care (ACATI), 400394 Cluj-Napoca, Romania
| | - Alexandru Leonard Alexa
- 1st Department of Anesthesia and Intensive Care, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (M.C.)
- Research Association in Anesthesia and Intensive Care (ACATI), 400394 Cluj-Napoca, Romania
| | - Dan Valean
- Department of Surgery, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Daniela Ionescu
- 1st Department of Anesthesia and Intensive Care, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (M.C.)
- Research Association in Anesthesia and Intensive Care (ACATI), 400394 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Nagesh VK, Pulipaka SP, Bhuju R, Martinez E, Badam S, Nageswaran GA, Tran HHV, Elias D, Mansour C, Musalli J, Bhattarai S, Shobana LS, Sethi T, Sethi R, Nikum N, Trivedi C, Jarri A, Westman C, Ahmed N, Philip S, Weissman S, Weinberger J, Bangolo AI. Management of gastrointestinal bleed in the intensive care setting, an updated literature review. World J Crit Care Med 2025; 14:101639. [DOI: 10.5492/wjccm.v14.i1.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/11/2024] Open
Abstract
Gastrointestinal (GI) bleeding is a critical and potentially life-threatening condition frequently observed in the intensive care unit (ICU). This literature review consolidates current insights on the epidemiology, etiology, management, and outcomes of GI bleeding in critically ill patients. GI bleeding remains a significant concern, especially among patients with underlying risk factors such as coagulopathy, mechanical ventilation, and renal failure. Managing GI bleeding in the ICU requires a multidisciplinary approach, including resuscitation, endoscopic intervention, pharmacologic therapy, and sometimes surgical procedures. Even with enhanced management strategies, GI bleeding in the ICU is associated with considerable morbidity and mortality, particularly when complicated by multi-organ failure. This review reiterates the need for adequate resuscitation and interventions in managing GI bleeding in critically ill patients, aiming to enhance survival rates and improve the quality of care within the ICU setting.
Collapse
Affiliation(s)
- Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ruchi Bhuju
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Emelyn Martinez
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shruthi Badam
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Gomathy Aarthy Nageswaran
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Daniel Elias
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Charlene Mansour
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Jaber Musalli
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sanket Bhattarai
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Lokeash Subramani Shobana
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tannishtha Sethi
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ritvik Sethi
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Namrata Nikum
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chinmay Trivedi
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Amer Jarri
- Department of Pulmonology and Critical Care, HCA Florida Bayonet Point Hospital, Hudson, FL 34667, United States
| | - Colin Westman
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Nazir Ahmed
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Shawn Philip
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Simcha Weissman
- Department of Internal Medicine, Hackensack Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Jonathan Weinberger
- Department of Gastroenterology, Hackensack University Medical Center, Hackensack, NJ 07061, United States
| | - Ayrton I Bangolo
- Department of Hematology & Oncology, John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ 07601, United States
| |
Collapse
|
3
|
Shin H, Young A, Morgan ME, Kim H, Brown CT, Moore K, Lamberg JJ, Perea LL. Bundling Procedures in Critically Ill Trauma Patients: Should It Be Done? Am Surg 2025:31348251314154. [PMID: 39887080 DOI: 10.1177/00031348251314154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
BACKGROUND The precautions brought on by the COVID-19 pandemic led to the growing practice of bundling lines in patients requiring intubation. Our study aims to examine the effect of immediate bundled lines (IBL) on traumatic injuries. We hypothesized that severely injured patients may benefit from IBL. METHODS A retrospective review of all intubated trauma patients (1/2015-12/2020) at a Level I Trauma Center was conducted. Patients ≤18 years and those who died or were transferred prior to intensive care unit (ICU) admission were excluded. IBL was defined as placement of central venous catheter (CVC) and arterial line (AL) ≤4 hours after intubation. Delayed lines were any lines placed >4 hours after intubation. Primary outcome was time from intubation to CVC and AL. RESULTS 728 patients were included. The majority received CVC and/or AL with 17.7% in a delayed fashion. Severe head injury (AIS ≥3) most often had immediate AL or delayed bundled lines (P < 0.001). IBL were more common with gunshot wounds (GSW) (P < 0.001) and blood transfusions (P < 0.001). IBL were associated with significantly lower GCS (P = 0.018) and higher median ISS. Multivariate logistic regression revealed severe/profound ISS, GSW, and pedestrian struck were predictive of IBL. DISCUSSION Intubated trauma patients who presented with certain mechanisms (GSW, pedestrian struck), received blood transfusions, or exhibited severe/profound ISS may be more likely to receive IBL. IBL is not superior to either immediate AL or to no lines in terms of mortality. No lines had a significant effect on ICU LOS or hospital LOS, except in the setting of severe head injury.
Collapse
Affiliation(s)
- Hannah Shin
- Department of Surgery, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Amy Young
- Department of Surgery, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Madison E Morgan
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Hanna Kim
- Department of Surgery, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Catherine T Brown
- Department of Surgery, Division of Trauma and Acute Care Surgery, Penn Medicine Lancaster General Health, Lancaster, PA, USA
| | - Katherine Moore
- Department of Surgery, Division of Trauma and Acute Care Surgery, Penn Medicine Lancaster General Health, Lancaster, PA, USA
| | - James J Lamberg
- Department of Anesthesiology, Penn Medicine Lancaster General Health, Lancaster, PA, USA
| | - Lindsey L Perea
- Department of Surgery, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
- Department of Surgery, Division of Trauma and Acute Care Surgery, Penn Medicine Lancaster General Health, Lancaster, PA, USA
| |
Collapse
|
4
|
Nordine M, Pille M, Kraemer J, Berger C, Brandhorst P, Kaeferstein P, Kopetsch R, Wessel N, Trauzeddel RF, Treskatsch S. Intraoperative Beat-to-Beat Pulse Transit Time (PTT) Monitoring via Non-Invasive Piezoelectric/Piezocapacitive Peripheral Sensors Can Predict Changes in Invasively Acquired Blood Pressure in High-Risk Surgical Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:3304. [PMID: 36992016 PMCID: PMC10059272 DOI: 10.3390/s23063304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Non-invasive tracking of beat-to-beat pulse transit time (PTT) via piezoelectric/piezocapacitive sensors (PES/PCS) may expand perioperative hemodynamic monitoring. This study evaluated the ability for PTT via PES/PCS to correlate with systolic, diastolic, and mean invasive blood pressure (SBPIBP, DBPIBP, and MAPIBP, respectively) and to detect SBPIBP fluctuations. METHODS PES/PCS and IBP measurements were performed in 20 patients undergoing abdominal, urological, and cardiac surgery. A Pearson's correlation analysis (r) between 1/PTT and IBP was performed. The predictive ability of 1/PTT with changes in SBPIBP was determined by area under the curve (reported as AUC, sensitivity, specificity). RESULTS Significant correlations between 1/PTT and SBPIBP were found for PES (r = 0.64) and PCS (r = 0.55) (p < 0.01), as well as MAPIBP/DBPIBP for PES (r = 0.6/0.55) and PCS (r = 0.5/0.45) (p < 0.05). A 7% decrease in 1/PTTPES predicted a 30% SBPIBP decrease (0.82, 0.76, 0.76), while a 5.6% increase predicted a 30% SBPIBP increase (0.75, 0.7, 0.68). A 6.6% decrease in 1/PTTPCS detected a 30% SBPIBP decrease (0.81, 0.72, 0.8), while a 4.8% 1/PTTPCS increase detected a 30% SBPIBP increase (0.73, 0.64, 0.68). CONCLUSIONS Non-invasive beat-to-beat PTT via PES/PCS demonstrated significant correlations with IBP and detected significant changes in SBPIBP. Thus, PES/PCS as a novel sensor technology may augment intraoperative hemodynamic monitoring during major surgery.
Collapse
Affiliation(s)
- Michael Nordine
- Department of Anesthesiology and Intensive Care Medicine, Hindenburgdamm 30, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 12203 Berlin, Germany; (M.N.)
| | - Marius Pille
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Physics, Humboldt University zu Berlin, 10115 Berlin, Germany
| | - Jan Kraemer
- Department of Physics, Humboldt University zu Berlin, 10115 Berlin, Germany
| | - Christian Berger
- Department of Anesthesiology and Intensive Care Medicine, Hindenburgdamm 30, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 12203 Berlin, Germany; (M.N.)
| | - Philipp Brandhorst
- Department of Anesthesiology and Intensive Care Medicine, Hindenburgdamm 30, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 12203 Berlin, Germany; (M.N.)
| | | | | | - Niels Wessel
- Department of Physics, Humboldt University zu Berlin, 10115 Berlin, Germany
- Department of Human Medicine, MSB Medical School Berlin GmbH, 14197 Berlin, Germany
| | - Ralf Felix Trauzeddel
- Department of Anesthesiology and Intensive Care Medicine, Hindenburgdamm 30, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 12203 Berlin, Germany; (M.N.)
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Hindenburgdamm 30, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 12203 Berlin, Germany; (M.N.)
| |
Collapse
|
5
|
Poncette AS, Mosch LK, Stablo L, Spies C, Schieler M, Weber-Carstens S, Feufel MA, Balzer F. A Remote Patient-Monitoring System for Intensive Care Medicine: Mixed Methods Human-Centered Design and Usability Evaluation. JMIR Hum Factors 2022; 9:e30655. [PMID: 35275071 PMCID: PMC8957007 DOI: 10.2196/30655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Continuous monitoring of vital signs is critical for ensuring patient safety in intensive care units (ICUs) and is becoming increasingly relevant in general wards. The effectiveness of health information technologies such as patient-monitoring systems is highly determined by usability, the lack of which can ultimately compromise patient safety. Usability problems can be identified and prevented by involving users (ie, clinicians). Objective In this study, we aim to apply a human-centered design approach to evaluate the usability of a remote patient-monitoring system user interface (UI) in the ICU context and conceptualize and evaluate design changes. Methods Following institutional review board approval (EA1/031/18), a formative evaluation of the monitoring UI was performed. Simulated use tests with think-aloud protocols were conducted with ICU staff (n=5), and the resulting qualitative data were analyzed using a deductive analytic approach. On the basis of the identified usability problems, we conceptualized informed design changes and applied them to develop an improved prototype of the monitoring UI. Comparing the UIs, we evaluated perceived usability using the System Usability Scale, performance efficiency with the normative path deviation, and effectiveness by measuring the task completion rate (n=5). Measures were tested for statistical significance using a 2-sample t test, Poisson regression with a generalized linear mixed-effects model, and the N-1 chi-square test. P<.05 were considered significant. Results We found 37 individual usability problems specific to monitoring UI, which could be assigned to six subcodes: usefulness of the system, response time, responsiveness, meaning of labels, function of UI elements, and navigation. Among user ideas and requirements for the UI were high usability, customizability, and the provision of audible alarm notifications. Changes in graphics and design were proposed to allow for better navigation, information retrieval, and spatial orientation. The UI was revised by creating a prototype with a more responsive design and changes regarding labeling and UI elements. Statistical analysis showed that perceived usability improved significantly (System Usability Scale design A: mean 68.5, SD 11.26, n=5; design B: mean 89, SD 4.87, n=5; P=.003), as did performance efficiency (normative path deviation design A: mean 8.8, SD 5.26, n=5; design B: mean 3.2, SD 3.03, n=5; P=.001), and effectiveness (design A: 18 trials, failed 7, 39% times, passed 11, 61% times; design B: 20 trials, failed 0 times, passed 20 times; P=.002). Conclusions Usability testing with think-aloud protocols led to a patient-monitoring UI with significantly improved usability, performance, and effectiveness. In the ICU work environment, difficult-to-use technology may result in detrimental outcomes for staff and patients. Technical devices should be designed to support efficient and effective work processes. Our results suggest that this can be achieved by applying basic human-centered design methods and principles. Trial Registration ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173
Collapse
Affiliation(s)
- Akira-Sebastian Poncette
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lina Katharina Mosch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Stablo
- Division of Ergonomics, Department of Psychology and Ergonomics (IPA), Technische Universität Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Monique Schieler
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus A Feufel
- Division of Ergonomics, Department of Psychology and Ergonomics (IPA), Technische Universität Berlin, Berlin, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning. Sci Rep 2021; 11:15755. [PMID: 34344934 PMCID: PMC8333060 DOI: 10.1038/s41598-021-94913-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
In two-thirds of intensive care unit (ICU) patients and 90% of surgical patients, arterial blood pressure (ABP) is monitored non-invasively but intermittently using a blood pressure cuff. Since even a few minutes of hypotension increases the risk of mortality and morbidity, for the remaining (high-risk) patients ABP is measured continuously using invasive devices, and derived values are extracted from the recorded waveforms. However, since invasive monitoring is associated with major complications (infection, bleeding, thrombosis), the ideal ABP monitor should be both non-invasive and continuous. With large volumes of high-fidelity physiological waveforms, it may be possible today to impute a physiological waveform from other available signals. Currently, the state-of-the-art approaches for ABP imputation only aim at intermittent systolic and diastolic blood pressure imputation, and there is no method that imputes the continuous ABP waveform. Here, we developed a novel approach to impute the continuous ABP waveform non-invasively using two continuously-monitored waveforms that are currently part of the standard-of-care, the electrocardiogram (ECG) and photo-plethysmogram (PPG), by adapting a deep learning architecture designed for image segmentation. Using over 150,000 min of data collected at two separate health systems from 463 patients, we demonstrate that our model provides a highly accurate prediction of the continuous ABP waveform (root mean square error 5.823 (95% CI 5.806–5.840) mmHg), as well as the derived systolic (mean difference 2.398 ± 5.623 mmHg) and diastolic blood pressure (mean difference − 2.497 ± 3.785 mmHg) compared to arterial line measurements. Our approach can potentially be used to measure blood pressure continuously and non-invasively for all patients in the acute care setting, without the need for any additional instrumentation beyond the current standard-of-care.
Collapse
|
7
|
Lobo FA, Vacas S, Rossetti AO, Robba C, Taccone FS. Does electroencephalographic burst suppression still play a role in the perioperative setting? Best Pract Res Clin Anaesthesiol 2020; 35:159-169. [PMID: 34030801 DOI: 10.1016/j.bpa.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
With the widespread use of electroencephalogram [EEG] monitoring during surgery or in the Intensive Care Unit [ICU], clinicians can sometimes face the pattern of burst suppression [BS]. The BS pattern corresponds to the continuous quasi-periodic alternation between high-voltage slow waves [the bursts] and periods of low voltage or even isoelectricity of the EEG signal [the suppression] and is extremely rare outside ICU and the operative room. BS can be secondary to increased anesthetic depth or a marker of cerebral damage, as a therapeutic endpoint [i.e., refractory status epilepticus or refractory intracranial hypertension]. In this review, we report the neurophysiological features of BS to better define its role during intraoperative and critical care settings.
Collapse
Affiliation(s)
- Francisco Almeida Lobo
- Anesthesiology Department, Centro Hospitalar de Trás-os-Montes e Alto Douro, Avenida da Noruega, Lordelo, 5000-508, Vila Real, Portugal.
| | - Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Reagan UCLA Medical Center, 757 Westwood Plaza #3325, Los Angeles, CA, 90095, USA.
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| | - Chiara Robba
- Azienda Ospedaliera Universitaria San Martino di Genova, Largo Rosanna Benzi,15, 16100, Genova, Italy.
| | - Fabio Silvio Taccone
- Hopital Érasme, Université Libre de Bruxelles, Department of Intensive Care Medicine, Route de Lennik, 808 1070, Brussels, Belgium.
| |
Collapse
|
8
|
Affiliation(s)
- Susana Vacas
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA.
| | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Vacas S, Hudson AE. Seen and Ignored: Are We Undermining Studies of Brain Health Interventions Before We Start? Anesth Analg 2020; 131:464-465. [PMID: 32665496 DOI: 10.1213/ane.0000000000004367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Susana Vacas
- From the Department of Anesthesia and Perioperative Medicine, University of California, Los Angeles, California
| | | |
Collapse
|
10
|
Vandiver MS, Vacas S. Interventions to improve perioperative neurologic outcomes. Curr Opin Anaesthesiol 2020; 33:661-667. [PMID: 32769748 DOI: 10.1097/aco.0000000000000905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Few outcomes in surgery are as important to patients as that of their neurologic status. The purpose of this review is to discuss and categorize the most common perioperative neurologic complications. We will also discuss strategies to help prevent and mitigate these complications for our patients. RECENT FINDINGS There are several strategies the anesthesiologist can undertake to prevent or treat conditions, such as perioperative neurocognitive disorders, spinal cord ischemia, perioperative stroke, and postoperative visual loss. SUMMARY A thorough understanding of threats to patients' neurologic well-being is essential to excellent clinical practice.
Collapse
Affiliation(s)
- Matthew S Vandiver
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
11
|
Jackevičiūtė J, Kraujalytė G, Jaremko I, Stremaitytė V, Gudaitytė J. Comparison of two continuous non-invasive haemodynamic monitoring techniques in the perioperative setting. Acta Med Litu 2019; 26:31-37. [PMID: 31281214 PMCID: PMC6586383 DOI: 10.6001/actamedica.v26i1.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The aim of the study was to identify the accuracy of and agreement between two non-invasive haemodynamic monitoring techniques in the perioperative setting - thoracic electrical bioimpedance (TEB) and Edwards Lifesciences ClearSight system (CS). MATERIALS AND METHODS The study included ten patients. Parametric quantitative data were expressed as mean ± SD. The Shapiro-Wilk test was used to test the normality of the distributions. A linear regression model was used to measure the strength of the linear relationship between TEB and CS. Bland-Altman analysis was performed to assess the mean difference, precision, and the limits of agreements (LOA). The Critchley and Critchley method was used to calculate the percentage error (PE), and if <30%, it was considered clinically acceptable. RESULTS Ten patients were involved in our study. The mean cardiac output (CO) with TEB was 6.15 ± 1.14 L/min vs. 4.78 ± 1.40 L/min with CS (p < 0.01). The relationship was significant (n = 144; r 2 = 0.7; p < 0.01). The mean bias, LOA, and PE were 1.37 ± 1.01 L/min, 3.35 L/min and -0.61 L/min and 36.22%, respectively. The mean stroke volume index (SVI) with TEB was 48.64 ± 9.8 ml/beat/m2 vs. 37.12 ± 9.14 ml/beat/m2 with CS (p < 0.01). The relationship was significant (n = 144; r 2 = 0.65; p < 0.01). The mean bias, LOA, and PE were 11.52 ± 7.92 ml/beat/m2, 27.04 ml/beat/m2 and -4 ml/beat/m2 and 36.19%. CONCLUSIONS The two methods of non-invasive haemodynamic monitoring are not compatible in the perioperative setting. However, the CS system has more advantages in terms of continuity and simplicity of monitoring, while measurements of TEB are interrupted by electrocautery.
Collapse
Affiliation(s)
- Jonė Jackevičiūtė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
| | - Greta Kraujalytė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inna Jaremko
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
| | - Vilija Stremaitytė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
| | - Jūratė Gudaitytė
- Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences, Lithuania
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
12
|
Flower RW, Mirza Z, Thom SR. Absolute quantification (ml blood/sec ∗ mm 2 tissue) of normal vs. diabetic foot skin microvascular blood perfusion: Feasibility of FM-PPG measurements under clinical conditions. Microvasc Res 2018; 123:58-61. [PMID: 30590061 DOI: 10.1016/j.mvr.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
Fluorescence-mediated photoplethysmography (FM-PPG) is the first routine clinical methodology by which to quantifiably measure tissue blood perfusion in absolute terms (mL blood/sec ∗ mm2 tissue). The FM-PPG methodology has been described in detail previously in this journal (MVR 114, 2017, 92-100), along with initial proof-of-concept measurements of blood perfusion in both ocular and forearm skin tissues. The motivation for the current study was to investigate whether FM-PPG can be used readily and routinely under realistic clinical conditions. The vehicle for doing this was to measure medial foot capillary blood flow, i.e., tissue perfusion, in 7 normal subjects, mean = 6.76 ± 2.29 E-005 mL/(sec ∙ mm2), and lesion-free areas of 8 type-2 diabetic patients with skin ulceration, mean = 4.67 + 3.15 E-005 mL/(sec ∙ mm2). Thus, perfusion in the diabetics was found to be moderately lower than that in the normal control subjects. Earlier skin perfusion measurements in medial forearms of 4 normal subjects, mean = 2.64 + 0.22 E-005 mL/(sec ∙ mm2), were lower than both the normal and diabetic foot perfusion measurements. Variability in the heartbeat-to-heartbeat blood perfusion pulses in the skin capillaries, defined as the ratio of the standard deviation among beat-to-beat pulses divided by the mean perfusion of those pulses, was determined for each subject. Average variability in foot skin was 21% in the diabetic population, versus 16% for normal subjects; and it was 18% in forearm skin. We conclude that absolute quantitative FM-PPG measurement of skin blood perfusion at the level of nutritive capillaries is feasible routinely under clinical conditions, allowing for quantitative measurement of skin tissue blood perfusion in absolute terms.
Collapse
Affiliation(s)
- R W Flower
- New York University School of Medicine, Department of Ophthalmology, United States of America; University of Maryland School of Medicine, Department of Ophthalmology, United States of America
| | - Z Mirza
- Baltimore Medical & Surgical Associates PA, United States of America
| | - S R Thom
- University of Maryland School of Medicine, Dept. of Emergency Medicine, United States of America.
| |
Collapse
|