1
|
Alonso-Juarranz M, Mascaraque M, Carrasco E, Gracia-Cazaña T, De La Sen O, Gilaberte Y, Gonzalez S, Juarranz Á, Falahat F. The Distinctive Features behind the Aggressiveness of Oral and Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2023; 15:3227. [PMID: 37370836 DOI: 10.3390/cancers15123227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Squamous cell carcinomas arise from stratified squamous epithelia. Here, a comparative analysis based on recent studies defining the genetic alterations and composition of the stroma of oral and cutaneous squamous cell carcinomas (OSCC and CSCC, respectively) was performed. Both carcinomas share some but not all histological and genetic features. This review was focused on how mutations in tumor suppressor genes and protooncogenes cooperate to determine the differentiation, aggressiveness, and metastatic potential of OSCC and CSCC. In fact, driver mutations in tumor suppressor genes are more frequently observed in OSCC than CSCC. These include mutations in TP53 (encoding pP53 protein), CDKN2A (encoding cyclin dependent kinase inhibitor 2A), FAT1 (encoding FAT atypical cadherin 1), and KMT2D (encoding lysine methyltransferase 2D), with the exception of NOTCH (encoding Notch receptor 1), whose mutation frequency is lower in OSCC compared to CSCC. Finally, we describe the differential composition of the tumor microenvironment and how this influences the aggressiveness of each tumor type. Although both OSCC and CSCC tumors are highly infiltrated by immune cells, high levels of tumor-infiltrating lymphocytes (TILs) have been more frequently reported as predictors of better outcomes in OSCC than CSCC. In conclusion, OSCC and CSCC partially share genetic alterations and possess different causal factors triggering their development. The tumor microenvironment plays a key role determining the outcome of the disease.
Collapse
Affiliation(s)
- Miguel Alonso-Juarranz
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Translational Research Unit, Miguel Servet University Hospital, Instituto Investigación Sanitaria Aragón (IIS), 50009 Zaragoza, Spain
| | - Elisa Carrasco
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria Aragón (IIS), 50009 Zaragoza, Spain
| | - Oscar De La Sen
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria Aragón (IIS), 50009 Zaragoza, Spain
| | - Salvador Gonzalez
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Department of Medicine and Medical Specialties, Universidad de Alcalá, 28871 Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
| | - Farzin Falahat
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
2
|
Welch D, Kleiman NJ, Arden PC, Kuryla CL, Buonanno M, Ponnaiya B, Wu X, Brenner DJ. No Evidence of Induced Skin Cancer or Other Skin Abnormalities after Long-Term (66 week) Chronic Exposure to 222-nm Far-UVC Radiation. Photochem Photobiol 2023; 99:168-175. [PMID: 35614842 PMCID: PMC9691791 DOI: 10.1111/php.13656] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 01/25/2023]
Abstract
Far-UVC radiation, typically defined as 200-235 nm, has similar or greater anti-microbial efficacy compared with conventional 254-nm germicidal radiation. In addition, biophysical considerations of the interaction of far-UVC with tissue, as well as multiple short-term safety studies in animal models and humans, suggest that far-UVC exposure may be safe for skin and eye tissue. Nevertheless, the potential for skin cancer after chronic long-term exposure to far-UVC has not been studied. Here, we assessed far-UVC induced carcinogenic skin changes and other pathological dermal abnormalities in 96 SKH-1 hairless mice of both sexes that were exposed to average daily dorsal skin doses of 400, 130 or 55 mJ cm-2 of 222 nm far-UVC radiation for 66 weeks, 5 days per week, 8 h per day, as well as similarly-treated unexposed controls. No evidence for increased skin cancer, abnormal skin growths or incidental skin pathology findings was observed in the far-UVC-exposed mice. In addition, there were no significant changes in morbidity or mortality. The findings from this study support the long-term safety of long-term chronic exposure to far-UVC radiation, and therefore its potential suitability as a practical anti-microbial approach to reduce airborne viral and bacterial loads in occupied indoor settings.
Collapse
Affiliation(s)
- David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY,Corresponding author: (David Welch)
| | - Norman J. Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Peter C. Arden
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Christine L. Kuryla
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
3
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
4
|
|
5
|
Welch D, Aquino de Muro M, Buonanno M, Brenner DJ. Wavelength-dependent DNA Photodamage in a 3-D Human Skin Model over the far-UVC and Germicidal-UVC Wavelength Ranges from 215 to 255 nm. Photochem Photobiol 2022; 98:1167-1171. [PMID: 35104367 PMCID: PMC9544172 DOI: 10.1111/php.13602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
Abstract
The effectiveness of UVC to reduce airborne‐mediated disease transmission is well established. However, conventional germicidal UVC (~254 nm) cannot be used directly in occupied spaces because of the potential for damage to the skin and eye. A recently studied alternative with the potential to be used directly in occupied spaces is far UVC (200–235 nm, typically 222 nm), as it cannot penetrate to the key living cells in the epidermis. Optimal far‐UVC use is hampered by limited knowledge of the precise wavelength dependence of UVC‐induced DNA damage, and thus we have used a monochromatic UVC exposure system to assess wavelength‐dependent DNA damage in a realistic 3‐D human skin model. We exposed a 3‐D human skin model to mono‐wavelength UVC exposures of 100 mJ/cm2, at UVC wavelengths from 215 to 255 nm (5 nm steps). At each wavelength, we measured yields of DNA‐damaged keratinocytes, and their distribution within the layers of the epidermis. No increase in DNA damage was observed in the epidermis at wavelengths from 215 to 235 nm, but at higher wavelengths (240–255 nm) significant levels of DNA damage was observed. These results support use of far‐UVC radiation to safely reduce the risk of airborne disease transmission in occupied locations.
Collapse
Affiliation(s)
- David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Marilena Aquino de Muro
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
6
|
Choi J, West CE, Roh YS, Sutaria N, Kwatra SG, Kwatra MM. Mouse models for actinic keratoses. J Pharmacol Toxicol Methods 2021; 110:107071. [PMID: 33933627 DOI: 10.1016/j.vascn.2021.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Actinic keratoses (AKs) represent a premalignant skin condition due to chronic sun damage that dramatically increases in prevalence in the aging population. Currently, animal models of AKs utilize photocarcinogenesis, chemical carcinogens, or targeted gene modulation, and each method possesses unique strengths and weaknesses. Models using photodamage most comprehensively describe methods for preferentially selecting AK lesions, while replicating the pathogenesis of AKs with greater fidelity than models utilizing other carcinogenic methods. The following review of current murine models of AKs will aid in the selection of mouse models appropriate for future in vivo studies to test the efficacy of novel therapeutic agents for the treatment of AKs.
Collapse
Affiliation(s)
- Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Youkyung S Roh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Forbes PD, Cole CA, deGruijl F. Origins and Evolution of Photocarcinogenesis Action Spectra, Including Germicidal UVC †. Photochem Photobiol 2021; 97:477-484. [PMID: 33351208 DOI: 10.1111/php.13371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/19/2020] [Indexed: 02/02/2023]
Abstract
Germicidal ultraviolet radiation (GUV) provides a means of dramatically reducing airborne spread of microorganisms in residential and workspace environments. Regarding design and use of GUV, both efficacy and safety data have accumulated over several decades, with a substantial increase of attention during the current COVID-19 pandemic. Considerations for skin and eye safety previously resulted in guidance on exposures in institutional and workplace settings. This report details the evolution of limits for skin exposures, with particular attention to the risk of skin neoplasia.
Collapse
Affiliation(s)
| | | | - Frank deGruijl
- Department of Dermatology, Leiden University Netherlands, Leiden, Zuid-Holland, Netherlands
| |
Collapse
|
8
|
Abstract
Two-stage chemical carcinogenesis method is widely used to elucidate genetic and molecular changes that lead to skin cancer development, as well as to test chemotherapeutic properties of novel drugs. This protocol allows researchers to reliably induce benign papilloma development and their conversion to squamous cell carcinoma in the skin of susceptible mouse strains in response to a single dose of carcinogen 2,4-dimethoxybenzaldehyde (DMBA) and repetitive applications of tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA).
Collapse
|
9
|
Kerkhof P, Gruijl F. Phototherapy in the perspective of the chronicity of psoriasis. J Eur Acad Dermatol Venereol 2020; 34:926-931. [DOI: 10.1111/jdv.16245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- P.C.M. Kerkhof
- Department of Dermatology Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - F.R. Gruijl
- Department of Dermatology Leids Universitair Medisch Centrum Nijmegen The Netherlands
| |
Collapse
|
10
|
Rognoni E, Walko G. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells 2019; 8:cells8050411. [PMID: 31058846 PMCID: PMC6562585 DOI: 10.3390/cells8050411] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Skin is the largest organ of the human body. Its architecture and physiological functions depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss the current knowledge of how the Hippo pathway and its downstream effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) contribute to the maintenance, activation and coordination of the epidermal and dermal cell populations during development, homeostasis, wound healing and cancer.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gernot Walko
- Department of Biology and Biochemistry & Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|