1
|
Alves SAS, Florentino LS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Oliveira AC, Scharfstein J, Marzolo MP, Pinheiro AAS, Caruso-Neves C. Surface megalin expression is a target to the inhibitory effect of bradykinin on the renal albumin endocytosis. Peptides 2021; 146:170646. [PMID: 34500007 DOI: 10.1016/j.peptides.2021.170646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Megalin-mediated albumin endocytosis plays a critical role in albumin reabsorption in proximal tubule (PT) epithelial cells (PTECs). Some studies have pointed out the modulatory effect of bradykinin (BK) on urinary protein excretion, but its role in PT protein endocytosis has not yet been determined. Here, we studied the possible correlation between BK and albumin endocytosis in PT. Using LLC-PK1 cells, a model of PTECs, we showed that BK specifically inhibited megalin-mediated albumin endocytosis. This inhibitory effect of BK was mediated by B2 receptor (B2R) because it was abolished by HOE140, an antagonist of B2R, but it was not affected by Lys-des-Arg9-BK, an antagonist of B1. BK induced the stall of megalin in EEA1+ endosomes, but not in LAMP1+ lysosomes, leading to a decrease in surface megalin expression. In addition, we showed that BK, through B2R, activated calphostin C-sensitive protein kinase C, which mediated its effect on the surface megalin expression and albumin endocytosis. These results reveal an important modulatory mechanism of PT albumin endocytosis by BK, which opens new possibilities to understanding the effect of BK on urinary albumin excretion.
Collapse
Affiliation(s)
- Sarah A S Alves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas S Florentino
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - María-Paz Marzolo
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Alves DT, Mendes LF, Sampaio WO, Coimbra-Campos LMC, Vieira MAR, Ferreira AJ, Martins AS, Popova E, Todiras M, Qadri F, Alenina N, Bader M, Santos RAS, Campagnole-Santos MJ. Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clin Sci (Lond) 2021; 135:2197-2216. [PMID: 34494083 DOI: 10.1042/cs20210599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
Activation of the angiotensin (Ang)-converting enzyme (ACE) 2/Ang-(1-7)/MAS receptor pathway of the renin-angiotensin system (RAS) induces protective mechanisms in different diseases. Herein, we describe the cardiovascular phenotype of a new transgenic rat line (TG7371) that expresses an Ang-(1-7)-producing fusion protein. The transgene-specific mRNA and the corresponding protein were shown to be present in all evaluated tissues of TG7371 with the highest expression in aorta and brain. Plasma Ang-(1-7) levels, measured by radioimmunoassay (RIA) were similar to control Sprague-Dawley (SD) rats, however high Ang-(1-7) levels were found in the hypothalamus. TG7371 showed lower baseline mean arterial pressure (MAP), assessed in conscious or anesthetized rats by telemetry or short-term recordings, associated with increased plasma atrial natriuretic peptide (ANP) and higher urinary sodium concentration. Moreover, evaluation of regional blood flow and hemodynamic parameters with fluorescent microspheres showed a significant increase in blood flow in different tissues (kidneys, mesentery, muscle, spleen, brown fat, heart and skin), with a resulting decrease in total peripheral resistance (TPR). TG7371 rats, on the other hand, also presented increased cardiac and global sympathetic tone, increased plasma vasopressin (AVP) levels and decreased free water clearance. Altogether, our data show that expression of an Ang-(1-7)-producing fusion protein induced a hypotensive phenotype due to widespread vasodilation and consequent fall in peripheral resistance. This phenotype was associated with an increase in ANP together with an increase in AVP and sympathetic drive, which did not fully compensate the lower blood pressure (BP). Here we present the hemodynamic impact of long-term increase in tissue expression of an Ang-(1-7)-fusion protein and provide a new tool to investigate this peptide in different pathophysiological conditions.
Collapse
Affiliation(s)
- Daniele T Alves
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Luiz Felipe Mendes
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Walkyria O Sampaio
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leda M C Coimbra-Campos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson J Ferreira
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Almir S Martins
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
| | | | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine-MDC, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Beriln, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité, University Medicine Berlin, Berlin, Germany
| | - Robson A S Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics and INCT-Nanobiopharmaceutics, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Takeuchi F, Liang YQ, Isono M, Tajima M, Cui ZH, Iizuka Y, Gotoda T, Nabika T, Kato N. Integrative genomic analysis of blood pressure and related phenotypes in rats. Dis Model Mech 2021; 14:dmm048090. [PMID: 34010951 PMCID: PMC8188887 DOI: 10.1242/dmm.048090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable progress made in human genome-wide association studies, there remains a substantial gap between statistical evidence for genetic associations and functional comprehension of the underlying mechanisms governing these associations. As a means of bridging this gap, we performed genomic analysis of blood pressure (BP) and related phenotypes in spontaneously hypertensive rats (SHR) and their substrain, stroke-prone SHR (SHRSP), both of which are unique genetic models of severe hypertension and cardiovascular complications. By integrating whole-genome sequencing, transcriptome profiling, genome-wide linkage scans (maximum n=1415), fine congenic mapping (maximum n=8704), pharmacological intervention and comparative analysis with transcriptome-wide association study (TWAS) datasets, we searched causal genes and causal pathways for the tested traits. The overall results validated the polygenic architecture of elevated BP compared with a non-hypertensive control strain, Wistar Kyoto rats (WKY); e.g. inter-strain BP differences between SHRSP and WKY could be largely explained by an aggregate of BP changes in seven SHRSP-derived consomic strains. We identified 26 potential target genes, including rat homologs of human TWAS loci, for the tested traits. In this study, we re-discovered 18 genes that had previously been determined to contribute to hypertension or cardiovascular phenotypes. Notably, five of these genes belong to the kallikrein-kinin/renin-angiotensin systems (KKS/RAS), in which the most prominent differential expression between hypertensive and non-hypertensive alleles could be detected in rat Klk1 paralogs. In combination with a pharmacological intervention, we provide in vivo experimental evidence supporting the presence of key disease pathways, such as KKS/RAS, in a rat polygenic hypertension model.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Michiko Tajima
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Zong Hu Cui
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Yoko Iizuka
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takanari Gotoda
- Department of Metabolism and Biochemistry, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|