1
|
Chatterjee S, Tilley H, Briordy D, Waldron RT, Kordbacheh R, Cutts WD, Cook A, Pandol SJ, Kim BJ, Fairweather D, Sin J. Investigating the potential role of capsaicin in facilitating the spread of coxsackievirus B3 via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626352. [PMID: 39677700 PMCID: PMC11642798 DOI: 10.1101/2024.12.02.626352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Coxsackievirus B3 (CVB3) is a non-enveloped picornavirus that can cause systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that following infection, CVB3 localizes to mitochondria, inducing mitochondrial fission and mitophagy, while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This results in the release of virus-laden mitophagosomes from the host cell as infectious extracellular vesicles (EVs) which allow non-lytic viral egress. Transient receptor potential vanilloid 1 (TRPV1/ TRPV1 ) is a heat and capsaicin-sensitive cation channel that regulates mitochondrial dynamics by inducing mitochondrial membrane depolarization and fission. In this study, we found that treating cells with the TRPV1 agonist capsaicin dramatically enhances CVB3 egress via EVs. Analysis of the released EVs revealed increased levels of viral capsid protein VP1/ VP1 , mitochondrial protein TOM70/ TOMM70 , and fission protein phospho-DRP1/ DNM1L (Ser 616). Moreover, these EVs exhibited increased levels of heat shock protein HSP70/ HSPA1A , suggesting a potential role of these chaperones in facilitating infectious EV release from cells. Furthermore, TRPV1 inhibition with capsazepine significantly reduced viral infection in vitro . We previously observed similar effects in vitro with another TRPV1 inhibitor SB-366791. Our current in vivo studies found that SB-366791 significantly mitigates pancreatic damage and reduces viral titers in mouse model of CVB3 pancreatitis. Given the lack of understanding regarding the factors that contribute to diverse clinical manifestations of CVB3, our study highlights capsaicin and TRPV1 as potential exacerbating factors that facilitates CVB3 dissemination via mitophagy-derived EVs. IMPORTANCE CVB3 is a prevalent pathogen responsible for a range of severe diseases, including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. Despite its clinical significance, factors that determine the severity of CVB3 infection and why some individuals experience life-threatening manifestations while others have mild, cold-like symptoms remain poorly understood. This study provides new insights into the molecular mechanisms underlying CVB3 dissemination and pathogenesis. By investigating the role of capsaicin, a common dietary component, in modulating viral spread, we demonstrate that activation of TRPV1 by capsaicin enhances release of infectious CVB3 via mitophagy-derived EVs. Our results offer novel evidence that modulating TRPV1 activity could influence the clinical outcomes of CVB3 infection, opening new avenues for therapeutic interventions. Given the widespread consumption of capsaicin, this study highlights an important dietary factor that could play a role in shaping CVB3 pathogenesis and its clinical manifestations, underscoring the potential for targeted strategies to mitigate severe disease outcomes.
Collapse
|
2
|
Joloudari JH, Azizi F, Nodehi I, Nematollahi MA, Kamrannejhad F, Hassannatajjeloudari E, Alizadehsani R, Islam SMS. Developing a Deep Neural Network model for COVID-19 diagnosis based on CT scan images. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16236-16258. [PMID: 37920011 DOI: 10.3934/mbe.2023725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
COVID-19 is most commonly diagnosed using a testing kit but chest X-rays and computed tomography (CT) scan images have a potential role in COVID-19 diagnosis. Currently, CT diagnosis systems based on Artificial intelligence (AI) models have been used in some countries. Previous research studies used complex neural networks, which led to difficulty in network training and high computation rates. Hence, in this study, we developed the 6-layer Deep Neural Network (DNN) model for COVID-19 diagnosis based on CT scan images. The proposed DNN model is generated to improve accurate diagnostics for classifying sick and healthy persons. Also, other classification models, such as decision trees, random forests and standard neural networks, have been investigated. One of the main contributions of this study is the use of the global feature extractor operator for feature extraction from the images. Furthermore, the 10-fold cross-validation technique is utilized for partitioning the data into training, testing and validation. During the DNN training, the model is generated without dropping out of neurons in the layers. The experimental results of the lightweight DNN model demonstrated that this model has the best accuracy of 96.71% compared to the previous classification models for COVID-19 diagnosis.
Collapse
Affiliation(s)
| | - Faezeh Azizi
- Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Issa Nodehi
- Department of Computer Engineering, University of Qom, Qom, Iran
| | | | - Fateme Kamrannejhad
- Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Edris Hassannatajjeloudari
- Department of Nursing, School of Nursing and Allied Medical Sciences, Maragheh Faculty of Medical Sciences, Maragheh, Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
| | - Sheikh Mohammed Shariful Islam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
3
|
Harapan H, Johar E, Maroef CN, Sriyani IY, Iqhrammullah M, Kusuma HI, Syukri M, Razali R, Hamdani H, Kurniawan R, Irwansyah I, Sofyan SE, Myint KS, Mahlia TI, Rizal S. Effect of elevated temperature on SARS-CoV-2 viability. F1000Res 2023; 11:403. [PMID: 37745627 PMCID: PMC10517306 DOI: 10.12688/f1000research.110305.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 09/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide disruption of global health putting healthcare workers at high risk. To reduce the transmission of SARS-CoV-2, in particular during treating the patients, our team aims to develop an optimized isolation chamber. The present study was conducted to evaluate the role of temperature elevation against SARS-CoV-2 viability, where the information would be used to build the isolation chamber. 0.6 mL of the Indonesian isolate of SARS-CoV-2 strain 20201012747 (approximately 10 13 PFU/mL) was incubated for one hour with a variation of temperatures: 25, 30, 35, 40, 45, 50, 55, 60, and 65°C in digital block heater as well as at room temperature (21-23°C) before used to infect Vero E6 cells. The viability was determined using a plaque assay. Our data found a significant reduction of the viral viability from 10 13 PFU/mL to 10 9 PFU/mL after the room temperature was increase to 40°C. Further elevation revealed that 55°C and above resulted in the total elimination of the viral viability. Increasing the temperature 40°C to reduce the SARS-CoV-2 survival could create mild hyperthermia conditions in a patient which could act as a thermotherapy. In addition, according to our findings, thermal sterilization of the vacant isolation chamber could be conducted by increasing the temperature to 55°C. In conclusion, elevating the temperature of the isolation chamber could be one of the main variables for developing an optimized isolation chamber for COVID-19 patients.
Collapse
Affiliation(s)
- Harapan Harapan
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Edison Johar
- Eijkman Institute for Molecular Biology, Jakarta, 10430, Indonesia
| | | | - Ida Yus Sriyani
- Eijkman Institute for Molecular Biology, Jakarta, 10430, Indonesia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Hendrix Indra Kusuma
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Maimun Syukri
- Department of Internal Medicine, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Razali Razali
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Hamdani Hamdani
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Rudi Kurniawan
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Irwansyah Irwansyah
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Sarwo Edhy Sofyan
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khin Saw Myint
- Eijkman Institute for Molecular Biology, Jakarta, 10430, Indonesia
| | - T.M. Indra Mahlia
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Samsul Rizal
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
4
|
Hossain MA, Rahman MH, Sultana H, Ahsan A, Rayhan SI, Hasan MI, Sohel M, Somadder PD, Moni MA. An integrated in-silico Pharmaco-BioInformatics approaches to identify synergistic effects of COVID-19 to HIV patients. Comput Biol Med 2023; 155:106656. [PMID: 36805222 PMCID: PMC9911982 DOI: 10.1016/j.compbiomed.2023.106656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND With high inflammatory states from both COVID-19 and HIV conditions further result in complications. The ongoing confrontation between these two viral infections can be avoided by adopting suitable management measures. PURPOSE The aim of this study was to figure out the pharmacological mechanism behind apigenin's role in the synergetic effects of COVID-19 to the progression of HIV patients. METHOD We employed computer-aided methods to uncover similar biological targets and signaling pathways associated with COVID-19 and HIV, along with bioinformatics and network pharmacology techniques to assess the synergetic effects of apigenin on COVID-19 to the progression of HIV, as well as pharmacokinetics analysis to examine apigenin's safety in the human body. RESULT Stress-responsive, membrane receptor, and induction pathways were mostly involved in gene ontology (GO) pathways, whereas apoptosis and inflammatory pathways were significantly associated in the Kyoto encyclopedia of genes and genomes (KEGG). The top 20 hub genes were detected utilizing the shortest path ranked by degree method and protein-protein interaction (PPI), as well as molecular docking and molecular dynamics simulation were performed, revealing apigenin's strong interaction with hub proteins (MAPK3, RELA, MAPK1, EP300, and AKT1). Moreover, the pharmacokinetic features of apigenin revealed that it is an effective therapeutic agent with minimal adverse effects, for instance, hepatoxicity. CONCLUSION Synergetic effects of COVID-19 on the progression of HIV may still be a danger to global public health. Consequently, advanced solutions are required to give valid information regarding apigenin as a suitable therapeutic agent for the management of COVID-19 and HIV synergetic effects. However, the findings have yet to be confirmed in patients, suggesting more in vitro and in vivo studies.
Collapse
Affiliation(s)
- Md Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh; Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, 7003, Bangladesh.
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Saiful Islam Rayhan
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Imran Hasan
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
5
|
Chen L, Xu Y. Low temperature upregulating HSP70 expression to mitigate the paclitaxel-induced damages in NHEK cell. PeerJ 2023; 11:e14630. [PMID: 36684674 PMCID: PMC9854382 DOI: 10.7717/peerj.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Scalp cooling is the most approved treatment for preventing chemotherapy-induced alopecia (CIA). However, the protective mechanism of scalp cooling has rarely been reported. The goal of the present study was to study the relationship between paclitaxel concentration and temperature and the inhibitory effect of low temperature on paclitaxel-induced alopecia. The results showed that the dose of paclitaxel should not exceed 60-70 mg/mL during scalp cooling treatment, and the optimal cooling temperature under different paclitaxel concentrations was determined. Normal human epidermal keratinocytes (NHEK) cells were analyzed by global transcriptome analysis, functional annotation and pathway analysis of differentially expressed genes (DEGs) and ELISA kit to analyze the mechanism of low temperature therapy. The expression of HSPA8, HSPA1A and HSPA1B, which belongs to HSP70, was up-regulated by low temperature. These genes are important target genes of low temperature treatment, which were confirmed by ELISA. The up-regulation of PLK2 and the down-regulation of TXNIP expression are the upstream of mitochondrial dysfunction and ROS, inhibiting the accumulation of ROS and up-regulating the mitochondrial membrane potential. Our research partially elucidates the therapeutic mechanism of scalp cooling, which provides a new idea on the drug research and development in CIA.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China,Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China,Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
6
|
Sleep and Neuroimmunomodulation for Maintenance of Optimum Brain Function: Role of Noradrenaline. Brain Sci 2022; 12:brainsci12121725. [PMID: 36552184 PMCID: PMC9776456 DOI: 10.3390/brainsci12121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Immune function and sleep are two normal physiological processes to protect the living organism from falling sick. There is hardly any disease in which they remain unaffected, though the quantum of effect may differ. Therefore, we propose the existence of a strong correlation between sleep (quality or quantity) and immune response. This may be supported by the fact that sleep loss modulates many of the immunological molecules, which includes interferons; however, not much is known about their mechanism of action. Sleep is divided into rapid eye movement sleep (REMS) and non-REMS. For practical reasons, experimental studies have been conducted mostly by inducing loss of REMS. It has been shown that withdrawal of noradrenaline (NA) is a necessity for generation of REMS. Moreover, NA level increases in the brain upon REMS loss and the elevated NA is responsible for many of the sleep loss-associated symptoms. In this review, we describe how sleep (and its disturbance/loss) modulates the immune system by modulating the NA level in the brain or vice versa to maintain immune functions, physiological homeostasis, and normal healthy living. The increased levels of NA during REMS loss may cause neuroinflammation possibly by glial activation (as NA is a key modulator of microglia). Therefore, maintaining sleep hygiene plays a crucial role for a normal healthy living.
Collapse
|
7
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Kula R. Therapeutic Hyperthermia Is Associated With Improved Survival in Afebrile Critically Ill Patients With Sepsis: A Pilot Randomized Trial. Crit Care Med 2022; 50:e693-e694. [PMID: 35838268 DOI: 10.1097/ccm.0000000000005555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Roman Kula
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ostrava, Ostrava-Poruba, Czech Republic
- Department of Intensive Care Medicine and Forensic Studies, Faculty of Medicine, University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
9
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
10
|
Roig-Marín N, Roig-Rico P. Elderly Hospitalized for COVID-19 and Fever: A Retrospective Cohort Study. Exp Aging Res 2021; 48:328-335. [PMID: 34583614 DOI: 10.1080/0361073x.2021.1973824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION COVID-19 has been responsible for countless deaths during this time. OBJECTIVES The main objective of this study was to determine if the referred fever of elderly patients admitted for COVID-19 was related to their mortality. MATERIAL AND METHODS Data were obtained from the 2020 hospital admissions records of the Hospital de San Juan de Alicante, Spain. RESULTS Those patients without fever had a greater age and comorbidity. There was not a significant difference related to fever in in-hospital mortality. DISCUSSION Previous studies seem to indicate that fever in its early stages has a protective effect rather than a harmful one. Our results confirm this trend. No data have been found in the literature that express the differences of elderly patients admitted for COVID-19 who presented fever versus those who did not in the context of hospital admission. CONCLUSION No significant differences were detected in terms of mortality with respect to the fever variable. However, patients without fever present significantly different laboratory values that could indicate a greater severity in their evolutionary course. For example, patients without fever have significantly higher D-dimer and LDH levels in addition to significantly lower arterial oxygen pressure and PaO2/FiO2 and SpO2/FiO2 ratios.
Collapse
Affiliation(s)
- Noel Roig-Marín
- Universidad Miguel Hernández, Campus De San Juan De Alicante, Spain
| | - Pablo Roig-Rico
- Universidad Miguel Hernández, Campus De San Juan De Alicante, Spain.,Departamento de Medicina Clínica, UMH , Hospital De San Juan De Alicante, Unidad De Enfermedades Infecciosas, Spain
| |
Collapse
|
11
|
Lubkowska A, Pluta W, Strońska A, Lalko A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int J Mol Sci 2021; 22:ijms22179366. [PMID: 34502274 PMCID: PMC8430838 DOI: 10.3390/ijms22179366] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
- Correspondence:
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
| | - Aleksandra Strońska
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Alicja Lalko
- Student Research at the Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland;
| |
Collapse
|
12
|
de Oliveira AA, Nunes KP. Crosstalk of TLR4, vascular NADPH oxidase, and COVID-19 in diabetes: What are the potential implications? Vascul Pharmacol 2021; 139:106879. [PMID: 34051372 PMCID: PMC8152239 DOI: 10.1016/j.vph.2021.106879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Toll-like receptor 4 (TLR4) contributes to the pathophysiology of diabetes. This happens, at least in part, because TLR4 modulates the enzyme NADPH oxidase, a primary source of ROS in vascular structures. Increased oxidative stress disrupts key vascular signaling mechanisms and drives the progression of diabetes, elevating the likelihood of cardiovascular diseases. Recently, it has been shown that patients with diabetes are also at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Given the importance of the interaction between TLR4 and NADPH oxidase to the disrupted diabetic vascular system, we put forward the hypothesis that TLR4-mediated NADPH oxidase-derived ROS might be a critical mechanism to help explain why this disparity appears in diabetic patients, but unfortunately, conclusive experimental evidence still lacks in the literature. Herein, we focus on discussing the pathological implications of this signaling communication in the diabetic vasculature and exploring this crosstalk in the context of diabetes-associated severe COVID-19.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Biology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, United States.
| |
Collapse
|
13
|
Clinical Mortality Review of COVID-19 Patients at Sukraraj Tropical and Infectious Disease Hospital, Nepal; A Retrospective Study. Trop Med Infect Dis 2021; 6:tropicalmed6030137. [PMID: 34287389 PMCID: PMC8293465 DOI: 10.3390/tropicalmed6030137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/11/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has challenged the health system worldwide, including the low and middle income countries like Nepal. In view of the rising number of infections and prediction of multiple waves of this disease, mortalities due to COVID-19 need to be critically analyzed so that every possible effort could be made to prevent COVID-19 related mortalities in future. Main aim of this research was to study about the mortalities due to COVID-19 at a tertiary level hospital, in Nepal. This was a retrospective, observational study that included all inpatients from Sukraraj Tropical and Infectious Disease Hospital, who were reverse transcriptase polymerase chain reaction positive for SARS-COV-2 and died during hospital stay from January 2020 till January 2021. Medical records of the patients were evaluated. Out of 860 total admissions in a year, there were 50 mortalities in the study center. Out of 50 mortalities, majority were males (76%) with male to female ratio of 3.17:1. Most were above 65 years of age (72%) and had two or more comorbidities (64%). The most common comorbidities among the patients who had died during hospital stay were hypertension (58%) followed by diabetes mellitus (50%) and chronic obstructive airway disease (24%). The median duration from the symptom onset to death was 18 days, ranged from the minimum of 2 days till maximum of 39 days. D-dimer was found to be >1 mg/L in 58% cases and ferritin was >500 ng/ml in 42% patients at presentation. A total of 42% patients had thrombocytopenia, 80% patients had lymphocytopenia and 60% had Neutrophil to Lymphocyte ratio >11.75 with the mean NLR of 18.38. Of total mortalities, 16% patients also showed microbiological evidence of secondary infection; Male gender, age more than 65 years, multiple comorbidities with lymphocytopenia, elevated Neutrophil lymphocyte ratio and elevated inflammatory markers were risk factors found in majority of mortalities in our study. These findings could be utilized for early triage and risk assessment in COVID-19 patients so that aggressive treatment strategies could be employed at the earliest to reduce mortalities due to COVID-19 in future.
Collapse
|
14
|
Jaffal SM, Abbas MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact 2021; 345:109567. [PMID: 34166652 PMCID: PMC8217345 DOI: 10.1016/j.cbi.2021.109567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus disease 2019 [COVID-19] is a global health threat caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV2] that requires two proteins for entry: angiotensin-converting enzyme 2 [ACE2] and -membrane protease serine 2 [TMPRSS2]. Many patients complain from pneumonia, cough, fever, and gastrointestinal (GI) problems. Notably, different TRP channels are expressed in various tissues infected by SARS-CoV-2. TRP channels are cation channels that show a common architecture with high permeability to calcium [Ca2+] in most sub-families. Literature review shed light on the possible role of TRP channels in COVID-19 disease. TRP channels may take part in inflammation, pain, fever, anosmia, ageusia, respiratory, cardiovascular, GI and neurological complications related to COVID-19. Also, TRP channels could be the targets for many active compounds that showed effectiveness against SARS-CoV-2. Desensitization or blocking TRP channels by antibodies, aptamers, small molecules or venoms can be an option for COVID-19 prevention and future treatment. This review provides insights into the involvement of TRP channels in different symptoms and mechanisms of SARS-CoV-2 , potential treatments targeting these channels and highlights missing gaps in literature.
Collapse
Affiliation(s)
- Sahar M Jaffal
- Department of Biological Sciences, Faculty of Science, The University of Jordan, 11942, Amman, Jordan.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
15
|
Pfeuty B, Courtade E, Thommen Q. Fine-tuned control of stress priming and thermotolerance. Phys Biol 2021; 18. [PMID: 34156353 DOI: 10.1088/1478-3975/ac02a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/18/2021] [Indexed: 11/11/2022]
Abstract
A common signature of cell adaptation to stress is the improved resistance upon priming by prior stress exposure. In the context of hyperthermia, priming or preconditioning with sublethal heat shock can be a useful tool to confer thermotolerance and competitive advantage to cells. In the present study, we develop a data-driven modeling framework that is simple and generic enough to capture a broad set of adaptation behaviors to heat stress at both molecular and cellular levels. The model recovers the main features of thermotolerance and clarifies the tradeoff principles which maximize the thermotolerance effect. It therefore provides an effective predictive tool to design preconditioning and fractionation hyperthermia protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Emmanuel Courtade
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Quentin Thommen
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
16
|
Bai G, Furushima D, Niki T, Matsuba T, Maeda Y, Takahashi A, Hattori T, Ashino Y. High Levels of the Cleaved Form of Galectin-9 and Osteopontin in the Plasma Are Associated with Inflammatory Markers That Reflect the Severity of COVID-19 Pneumonia. Int J Mol Sci 2021; 22:ijms22094978. [PMID: 34067072 PMCID: PMC8125627 DOI: 10.3390/ijms22094978] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman's correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.
Collapse
Affiliation(s)
- Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Daisuke Furushima
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kagawa 761-0793, Japan;
| | - Takashi Matsuba
- Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan;
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Yosuke Maeda
- Viral Section, Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Miyagi 982-8502, Japan
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| |
Collapse
|
17
|
Mancilla-Galindo J, Galindo-Sevilla N. Exploring the rationale for thermotherapy in COVID-19. Int J Hyperthermia 2021; 38:202-212. [PMID: 33682604 DOI: 10.1080/02656736.2021.1883127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increased transmissibility of the pandemic severe acute respiratory coronavirus 2 (SARS-CoV-2) has been noted to occur at lower ambient temperatures. This is seemingly related to a better replication of most respiratory viruses, including SARS-CoV-2, at lower-than-core body temperatures (i.e., 33 °C vs 37 °C). Also, intrinsic characteristics of SARS-CoV-2 make it a heat-susceptible pathogen. Thermotherapy has successfully been used to combat viral infections in plants which could otherwise result in great economic losses; 90% of viruses causing infections in plants are positive-sense single-stranded ribonucleic acid (+ssRNA) viruses, a characteristic shared by SARS-CoV-2. Thus, it is possible to envision the use of heat-based interventions (thermotherapy or mild-temperature hyperthermia) in patients with COVID-19 for which moderate cycles (every 8-12 h) of mild-temperature hyperthermia (1-2 h) have been proposed. However, there are potential safety and mechanistic concerns which could limit the use of thermotherapy only to patients with mild-to-moderate COVID-19 to prevent disease progression rather than to treat patients who have already progressed to severe-to-critical COVID-19. Here, we review the characteristics of SARS-CoV-2 which make it a heat-susceptible virus, potential host mechanisms which could be enhanced at higher temperatures to aid viral clearance, and how thermotherapy could be investigated as a modality of treatment in patients with COVID-19 while taking into consideration potential risks.
Collapse
Affiliation(s)
- Javier Mancilla-Galindo
- Facultad de Medicina, División de Investigación, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Norma Galindo-Sevilla
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
18
|
Khomari F, Nabi-Afjadi M, Yarahmadi S, Eskandari H, Bahreini E. Effects of Cell Proteostasis Network on the Survival of SARS-CoV-2. Biol Proced Online 2021; 23:8. [PMID: 33618659 PMCID: PMC7899210 DOI: 10.1186/s12575-021-00145-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
The proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts' gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fateme Khomari
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Hanie Eskandari
- Department of Biology, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| |
Collapse
|
19
|
Baker TL, Greiner JV. Guidelines: Discharge Instructions for Covid-19 Patients. J Prim Care Community Health 2021; 12:21501327211024400. [PMID: 34142617 PMCID: PMC8216334 DOI: 10.1177/21501327211024400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION/OBJECTIVES Clinicians treating COVID-19 patients face a major challenge in providing an effective relationship with patients who are discharged to return to home in order to optimize patient self-management after discharge. The purpose of these discharge instructions is to assist and provide guidance for physicians, nurses, and other health care personnel involved in discharging COVID-19 patients to home after encounters at hospitals, emergency departments, urgent care settings, and medical offices. METHODS A systematic literature-search of studies evaluating both symptoms and signs of COVID-19 was performed in order to establish specific optimal performance criteria in monitoring a patient's status with regard to disease safety. These optimal performance criteria parameters were considered with regard to the severity of morbidity and mortality. Strategies used to develop the discharge instructions included review of a broad spectrum of literature to develop the discharge criteria. RESULTS These guidelines are presented for patient education and should achieve the essential goals including: enabling patients to understand their medical situation, preventing complications, supporting patients by providing instructions, helping patients make more effective use of available health services, and managing patient stress by giving patients comfort through the knowledge of specific recommendations including how to respond to situations. CONCLUSION The COVID-19 pandemic requires clinicians to efficiently teach their patients self-management strategies and to provide a safe educated response to the patient and the surrounding community environment. The primary goal of the patient education discharge-instructions (PEDI) is to provide self-management strategies for preventing complications and disease transmission.
Collapse
Affiliation(s)
- Terrance L. Baker
- Johns Hopkins Community Physician, Baltimore, MD, USA
- University of Maryland, School of Nursing, Baltimore, MD, USA
- State University of New York at Stony Brook, School of Nursing, Brookhaven, NY, USA
- Sollay Medical Center, Sollay Kenyan Foundation, Katani Hospital, Katani, Kenya
| | - Jack V. Greiner
- Schepens Eye Research Institute of Massachusetts Eye & Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, MA, USA
| |
Collapse
|