1
|
Amira G, Akram D, Fadoua M, Bilel N, Alya B, Khalil BS, Monia SK, Fatma S, Habib HM, Nathalie B, Raja TM. Imbalance of TH17/TREG cells in Tunisian patients with systemic sclerosis. Presse Med 2024; 53:104221. [PMID: 38161053 DOI: 10.1016/j.lpm.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/07/2022] [Accepted: 11/22/2022] [Indexed: 01/03/2024] Open
Abstract
Fibrosis is a pathological manifestation in which connective tissue replaces normal one. It can affect many tissues from the skin to internal organs such as the lungs. Manifestations of pulmonary involvement can be pulmonary arterial hypertension or pulmonary fibrosis. The latter one is currently the leading cause of death in various autoimmune diseases, including systemic sclerosis. Our study group consists of 50 patients with systemic sclerosis: 24 with limited cutaneous form and 26 with diffuse cutaneous form. This cohort was compared to 50 healthy controls (age and sex matched); our aim is to explore the distribution of TH17 cells (TH17) as well as regulatory T cells (TREG) and study their correlation with the disease's progress. Our results show an increase for IL17A in patients compared to controls and that this increase is correlated with a specific clinical involvement: Pulmonary fibrosis. This correlation suggests a crucial role of IL17A in fibrosis especially in systemic sclerosis. In addition, we have shown that the percentages of TH17 cells are higher in patients; however, the percentages of TREG cells are similar between patients and controls. A study of TREG cell activity showed that TREG lost suppressive activity by inactivating the FOXP3 transcription factor. This proves that despite their presence, TREG does not adequately carry out their regulatory activity. Finally, we analyzed the correlation between TH17/TREG and clinical damage; the results show a positive correlation with pulmonary involvement proving the role of TH17/TREG balance in induced fibrosis in systemic sclerosis. No significative difference was observed, for all the parameters, between the two different forms of the disease. In conclusion, the results associated with the TH17/TREG scale and their correlations with fibrosis in systemic sclerosis open a way for new tools to manage this autoimmune disease, which up to today has neither treatment nor accurate diagnosis.
Collapse
Affiliation(s)
- Gabsi Amira
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia; Aix Marseille University, INSERM, C2VN UMR1263, Marseille, France.
| | - Dlala Akram
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Missaoui Fadoua
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Neili Bilel
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Boutaba Alya
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Ben Salem Khalil
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| | - Smiti Khanfir Monia
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Said Fatma
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Houman Mohamed Habib
- Internal medicine service, University hospital center LA RABTA, Tunis 1007, Tunisia; University of Tunis EL MANAR, Faculty of medicine Tunis, Tunis 1007, Tunisia
| | - Bardin Nathalie
- Aix Marseille University, INSERM, C2VN UMR1263, Marseille, France; Laboratory of immunology, University hospital La Conception Marseille France, France
| | - Triki Marrakchi Raja
- Laboratory of Genetics Immunology and Human Pathology, University of Tunis El Manar, LR05ES05, Tunis 2092, Tunisia
| |
Collapse
|
2
|
Zhang H, Yang Y, Liu Z, Xu H, Zhu H, Wang P, Liang G. Significance of methylation-related genes in diagnosis and subtype classification of renal interstitial fibrosis. Hereditas 2023; 160:32. [PMID: 37496082 PMCID: PMC10373342 DOI: 10.1186/s41065-023-00295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND RNA methylation modifications, such as N1-methyladenosine/N6-methyladenosine /N5-methylcytosine (m1A/m6A/m5C), are the most common RNA modifications and are crucial for a number of biological processes. Nonetheless, the role of RNA methylation modifications of m1A/m6A/m5C in the pathogenesis of renal interstitial fibrosis (RIF) remains incompletely understood. METHODS Firstly, we downloaded 2 expression datasets from the GEO database, namely GSE22459 and GSE76882. In a differential analysis of these datasets between patients with and without RIF, we selected 33 methylation-related genes (MRGs). We then applied a PPI network, LASSO analysis, SVM-RFE algorithm, and RF algorithm to identify key MRGs. RESULTS We eventually obtained five candidate MRGs (WTAP, ALKBH5, YTHDF2, RBMX, and ELAVL1) to forecast the risk of RIF. We created a nomogram model derived from five key MRGs, which revealed that the nomogram model may be advantageous to patients. Based on the selected five significant MRGs, patients with RIF were classified into two MRG patterns using consensus clustering, and the correlation between the five MRGs, the two MRG patterns, and the genetic pattern with immune cell infiltration was shown. Moreover, we conducted GO and KEGG analyses on 768 DEGs between MRG clusters A and B to look into their different involvement in RIF. To measure the MRG patterns, a PCA algorithm was developed to determine MRG scores for each sample. The MRG scores of the patients in cluster B were higher than those in cluster A. CONCLUSIONS Ultimately, we concluded that cluster A in the two MRG patterns identified on these five key m1A/m6A/m5C regulators may be associated with RIF.
Collapse
Affiliation(s)
- Hanchao Zhang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yue Yang
- Department of Urology, The Affilated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhengdao Liu
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong Xu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Han Zhu
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Peirui Wang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guobiao Liang
- Medical College of Soochow University, Suzhou, Jiangsu, China.
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Fang XD, He JK, Chen YX, Ke B, Zhu SY, Fan CQ, Tu WP, Li P. MiR-449a downregulation alleviates the progression of renal interstitial fibrosis by mediating the KLF4/MFN2 axis. Int Urol Nephrol 2023:10.1007/s11255-023-03503-6. [PMID: 36781680 DOI: 10.1007/s11255-023-03503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/12/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) seriously threatens the health of individuals. MiRNAs regulate the progression of fibrosis. Nevertheless, the detailed function of miR-449a in RIF is largely unknown. METHODS In vitro and in vivo models of RIF were developed to evaluate the function of miR-449a. The relationship among miR-449a, KLF4, and MFN2 was explored using a dual-luciferase reporter assay and chromatin immunoprecipitation. Additionally, the pathological changes in the mice were detected using Masson staining. The mRNA and protein expressions were assessed using quantitative reverse transcription polymerase chain reaction and western blot, respectively. RESULTS TGF-β1 downregulated the expressions of KLF4 and MFN2 in TCMK-1 cells, but upregulated the level of miR-449a. The downregulation of miR-449a significantly inhibited TGF-β1-induced upregulation of fibrotic proteins in TCMK-1 cells. Meanwhile, miR-449a directly targeted KLF4. Moreover, KLF4 overexpression activated MFN2 transcription and reversed TGF-β1-induced fibrosis by positively regulating MFN2. Furthermore, the downregulation of miR-449a could obviously alleviate the symptoms of RIF in mice with unilateral ureteral obstruction. CONCLUSION MiR-449a downregulation attenuated the development of RIF by mediating the KLF4/MFN2 axis. Therefore, miR-449a might act as a target in treating RIF.
Collapse
Affiliation(s)
- Xiang-Dong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Jia-Ke He
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Shu-Ying Zhu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Chu-Qiao Fan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Wei-Ping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
IL-18 deficiency ameliorates the progression from AKI to CKD. Cell Death Dis 2022; 13:957. [PMID: 36379914 PMCID: PMC9666542 DOI: 10.1038/s41419-022-05394-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Inflammation is an important factor in the progression from acute kidney injury (AKI) to chronic kidney disease (CKD). The role of interleukin (IL)-18 in this progression has not been examined. We aimed to clarify whether and how IL-18 limits this progression. In a folic acid induced renal injury mouse model, we studied the time course of kidney injury and renal IL-18 expression. In wild-type mice following injection, renal IL-18 expression increased. In parallel, we characterized other processes, including at day 2, renal tubular necroptosis assessed by receptor-interacting serine/threonine-protein kinase1 (RIPK1) and RIPK3; at day 14, transdifferentiation (assessed by transforming growth factor β1, vimentin and E-cadherin); and at day 30, fibrosis (assessed by collagen 1). In IL-18 knockout mice given folate, compared to wild-type mice, tubular damage and necroptosis, transdifferentiation, and renal fibrosis were attenuated. Importantly, IL-18 deletion decreased numbers of renal M1 macrophages and M1 macrophage cytokine levels at day 14, and reduced M2 macrophages numbers and macrophage cytokine expression at day 30. In HK-2 cells, IL-18 knockdown attenuated necroptosis, transdifferentiating and fibrosis.In patients with tubulointerstitial nephritis, IL-18 protein expression was increased on renal biopsies using immunohistochemistry. We conclude that genetic IL-18 deficiency ameliorates renal tubular damage, necroptosis, cell transdifferentiation, and fibrosis. The renoprotective role of IL-18 deletion in the progression from AKI to fibrosis may be mediated by reducing a switch in predominance from M1 to profibrotic M2 macrophages during the process of kidney repair.
Collapse
|
5
|
Metabolic signatures of immune cells in chronic kidney disease. Expert Rev Mol Med 2022; 24:e40. [PMID: 36268748 PMCID: PMC9884772 DOI: 10.1017/erm.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immune cells play a key role in maintaining renal dynamic balance and dealing with renal injury. The physiological and pathological functions of immune cells are intricately connected to their metabolic characteristics. However, immunometabolism in chronic kidney disease (CKD) is not fully understood. Pathophysiologically, disruption of kidney immune cells homeostasis causes inflammation and tissue damage via triggering metabolic reprogramming. The diverse metabolic characteristics of immune cells at different stages of CKD are strongly associated with their different pathological effect. In this work, we reviewed the metabolic characteristics of immune cells (macrophages, natural killer cells, T cells, natural killer T cells and B cells) and several non-immune cells, as well as potential treatments targeting immunometabolism in CKD. We attempt to elaborate on the metabolic signatures of immune cells and their intimate correlation with non-immune cells in CKD.
Collapse
|
6
|
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol 2022; 13:835005. [PMID: 35370998 PMCID: PMC8971815 DOI: 10.3389/fimmu.2022.835005] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the course of the development of fibrosis, certain parts of the intestine become narrowed, significantly destroying the structure and function of the intestine and affecting the quality of life of patients. Chronic inflammation is an important initiating factor of fibrosis. Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal stem cells (MSCs) are capable of tissue regeneration and repair through their self-differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have been shown to play an important therapeutic role in the fibrosis of many organs. However, the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes the mechanism of intestinal fibrosis, including the role of immune cells, TGF-β, and the gut microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs are also discussed.
Collapse
Affiliation(s)
- Yifei Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Huang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- General Surgery Department, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| | - Fei Mao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| |
Collapse
|
7
|
Hirooka Y, Nozaki Y. Interleukin-18 in Inflammatory Kidney Disease. Front Med (Lausanne) 2021; 8:639103. [PMID: 33732720 PMCID: PMC7956987 DOI: 10.3389/fmed.2021.639103] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-18, a member of the IL-1 superfamily, is a pro-inflammatory cytokine that is structurally similar to IL-1β. IL-18 promotes the production of interferon gamma (IFN-γ) and strongly induces a Th1 response. IL-18 drives the same myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway as IL-1β. In physiological conditions, IL-18 is regulated by the endogenous inhibitor IL-18 binding protein (IL-18BP), and the activity of IL-18 is balanced. It is reported that in several inflammatory diseases, the IL-18 activity is unbalanced, and IL-18 neutralization by IL-18BP is insufficient. IL-18 acts synergistically with IL-12 to induce the production of IFN-γ as a Th1 cytokine, and IL-18 acts alone to induce the production of Th2 cytokines such as IL-4 and IL-13. In addition, IL-18 alone enhances natural killer (NK) cell activity and FAS ligand expression. The biological and pathological roles of IL-18 have been studied in many diseases. Here we review the knowledge regarding IL-18 signaling and the role of IL-18 in inflammatory kidney diseases. Findings on renal injury in coronavirus disease 2019 (COVID-19) and its association with IL-18 will also be presented.
Collapse
Affiliation(s)
- Yasuaki Hirooka
- Department of Rheumatology, Kindai University Nara Hospital, Nara, Japan
| | - Yuji Nozaki
- Department of Hematology and Rheumatology, Kindai University School of Medicine, Osaka, Japan
| |
Collapse
|