1
|
Xie H, Bastepe I, Zhou W, Ay B, Ceraj Z, Portales-Castillo IA, Liu ES, Burnett-Bowie SAM, Jüppner H, Rhee EP, Bastepe M, Simic P. 1,25-Dihydroxyvitamin D3 regulates furin-mediated FGF23 cleavage. JCI Insight 2023; 8:e168957. [PMID: 37681408 PMCID: PMC10544208 DOI: 10.1172/jci.insight.168957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023] Open
Abstract
Intact fibroblast growth factor 23 (iFGF23) is a phosphaturic hormone that is cleaved by furin into N-terminal and C-terminal fragments. Several studies have implicated vitamin D in regulating furin in infections. Thus, we investigated the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D] and the vitamin D receptor (VDR) on furin-mediated iFGF23 cleavage. Mice lacking VDR (Vdr-/-) had a 25-fold increase in iFGF23 cleavage, with increased furin levels and activity compared with wild-type (WT) littermates. Inhibition of furin activity blocked the increase in iFGF23 cleavage in Vdr-/- animals and in a Vdr-knockdown osteocyte OCY454 cell line. Chromatin immunoprecipitation revealed VDR binding to DNA upstream of the Furin gene, with more transcription in the absence of VDR. In WT mice, furin inhibition reduced iFGF23 cleavage, increased iFGF23, and reduced serum phosphate levels. Similarly, 1,25(OH)2D reduced furin activity, decreased iFGF23 cleavage, and increased total FGF23. In a post hoc analysis of a randomized clinical trial, we found that ergocalciferol treatment, which increased serum 1,25(OH)2D, significantly decreased serum furin activity and iFGF23 cleavage, compared with placebo. Thus, 1,25(OH)2D inhibits iFGF23 cleavage via VDR-mediated suppression of Furin expression, thereby providing a mechanism by which vitamin D can augment phosphaturic iFGF23 levels.
Collapse
Affiliation(s)
- Han Xie
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isinsu Bastepe
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Zhou
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Birol Ay
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zara Ceraj
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ignacio A. Portales-Castillo
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva S. Liu
- Endocrine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Harald Jüppner
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugene P. Rhee
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Murat Bastepe
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Simic
- Nephrology Division and
- Endocrine Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Detection of SARS-CoV-2 Derived Small RNAs and Changes in Circulating Small RNAs Associated with COVID-19. Viruses 2021; 13:v13081593. [PMID: 34452458 PMCID: PMC8402885 DOI: 10.3390/v13081593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cleavage of double-stranded RNA is described as an evolutionary conserved host defense mechanism against viral infection. Small RNAs are the product and triggers of post transcriptional gene silencing events. Up until now, the relevance of this mechanism for SARS-CoV-2-directed immune responses remains elusive. Herein, we used high throughput sequencing to profile the plasma of active and convalescent COVID-19 patients for the presence of small circulating RNAs. The existence of SARS-CoV-2 derived small RNAs in plasma samples of mild and severe COVID-19 cases is described. Clusters of high siRNA abundance were discovered, homologous to the nsp2 3′-end and nsp4 virus sequence. Four virus-derived small RNA sequences have the size of human miRNAs, and a target search revealed candidate genes associated with ageusia and long COVID symptoms. These virus-derived small RNAs were detectable also after recovery from the disease. The additional analysis of circulating human miRNAs revealed differentially abundant miRNAs, discriminating mild from severe cases. A total of 29 miRNAs were reduced or absent in severe cases. Several of these are associated with JAK-STAT response and cytokine storm.
Collapse
|