1
|
Li J, Gao P, Zhang S, Lin X, Chen J, Zhang S, Jiao Y, Yu W, Xia X, Yang L. The G protein-coupled estrogen receptor of the trigeminal ganglion regulates acute and chronic itch in mice. CNS Neurosci Ther 2024; 30:e14367. [PMID: 37452499 PMCID: PMC10848076 DOI: 10.1111/cns.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Itch is an unpleasant sensation that severely impacts the patient's quality of life. Recent studies revealed that the G protein-coupled estrogen receptor (GPER) may play a crucial role in the regulation of pain and itch perception. However, the contribution of the GPER in primary sensory neurons to the regulation of itch perception remains elusive. This study aimed to investigate whether and how the GPER participates in the regulation of itch perception in the trigeminal ganglion (TG). METHODS AND RESULTS Immunofluorescence staining results showed that GPER-positive (GPER+ ) neurons of the TG were activated in both acute and chronic itch. Behavioral data indicated that the chemogenetic activation of GPER+ neurons of the TG of Gper-Cre mice abrogated scratching behaviors evoked by acute and chronic itch. Conversely, the chemogenetic inhibition of GPER+ neurons resulted in increased itch responses. Furthermore, the GPER expression and function were both upregulated in the TG of the dry skin-induced chronic itch mouse model. Pharmacological inhibition of GPER (or Gper deficiency) markedly increased acute and chronic itch-related scratching behaviors in mouse. Calcium imaging assays further revealed that Gper deficiency in TG neurons led to a marked increase in the calcium responses evoked by agonists of the transient receptor potential ankyrin A1 (TRPA1) and transient receptor potential vanilloid V1 (TRPV1). CONCLUSION Our findings demonstrated that the GPER of TG neurons is involved in the regulation of acute and chronic itch perception, by modulating the function of TRPA1 and TRPV1. This study provides new insights into peripheral itch sensory signal processing mechanisms and offers new targets for future clinical antipruritic therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Siyu Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Anesthesiology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Xiaoqi Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiaoqiong Xia
- Department of Anesthesiology, Chaohu Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
2
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
3
|
Jiang XW, Yu WH, Wang Y, Xiong ZL, Ma XL, Zhou C, Huo MH. Acetyl-11-keto-beta-boswellic acid promotes sciatic nerve repair after injury: molecular mechanism. Neural Regen Res 2022; 17:2778-2784. [PMID: 35662229 PMCID: PMC9165397 DOI: 10.4103/1673-5374.339494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous studies showed that acetyl-11-keto-beta-boswellic acid (AKBA), the active ingredient in the natural Chinese medicine Boswellia, can stimulate sciatic nerve injury repair via promoting Schwann cell proliferation. However, the underlying molecular mechanism remains poorly understood. In this study, we performed genomic sequencing in a rat model of sciatic nerve crush injury after gastric AKBA administration for 30 days. We found that the phagosome pathway was related to AKBA treatment, and brain-derived neurotrophic factor expression in the neurotrophic factor signaling pathway was also highly up-regulated. We further investigated gene and protein expression changes in the phagosome pathway and neurotrophic factor signaling pathway. Myeloperoxidase expression in the phagosome pathway was markedly decreased, and brain-derived neurotrophic factor, nerve growth factor, and nerve growth factor receptor expression levels in the neurotrophic factor signaling pathway were greatly increased. Additionally, expression levels of the inflammatory factors CD68, interleukin-1β, pro-interleukin-1β, and tumor necrosis factor-α were also decreased. Myelin basic protein- and β3-tubulin-positive expression as well as the axon diameter-to-total nerve diameter ratio in the injured sciatic nerve were also increased. These findings suggest that, at the molecular level, AKBA can increase neurotrophic factor expression through inhibiting myeloperoxidase expression and reducing inflammatory reactions, which could promote myelin sheath and axon regeneration in the injured sciatic nerve.
Collapse
|