1
|
Filippi L, Evangelista L, Schillaci O. [ 18F]Fluoropivalate, mitochondria, and the resurrection of short-chain fatty acids. Eur J Nucl Med Mol Imaging 2023; 50:3802-3805. [PMID: 37523016 DOI: 10.1007/s00259-023-06367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy.
| | - Laura Evangelista
- IRCCS Humanitas Research Hospital, Via Manzoni 56Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4Pieve Emanuele, 20072, Milan, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Ouyang ZQ, Zheng GR, Duan XR, Zhang XR, Ke TF, Bao SS, Yang J, He B, Liao CD. Diagnostic accuracy of glioma pseudoprogression identification with positron emission tomography imaging: a systematic review and meta-analysis. Quant Imaging Med Surg 2023; 13:4943-4959. [PMID: 37581048 PMCID: PMC10423382 DOI: 10.21037/qims-22-1340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 08/16/2023]
Abstract
Background Positron emission tomography (PET) imaging is a promising molecular neuroimaging technique and has been proposed as one of the criteria for glioma management. However, there is some controversy concerning the diagnostic accuracy of PET using different radiotracers to differentiate between glioma pseudoprogression (PsP) and true progression (TPR). The purpose of this meta-analysis was to systematically evaluate the methodological quality and clinical value of original studies for distinguishing PsP from TPR in glioma. Methods The Medline, Web of Science, Embase, Cochrane Library, and ClinicalTrials.gov were searched from inception until September 1, 2022. Retrieved clinical studies only investigated the PsP cases but did not include the cases of radiation necrosis or other treatment-related changes. Eligible studies were screened for data extraction and evaluated by 2 independent reviewers using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. A random effects model was used to describe summary receiver operating characteristics. Meta-regression and subgroup analyses were applied to identify any sources of heterogeneity. Results The meta-analysis included 20 studies, comprising 317 (30.9%) patients with PsP and 708 (69.1%) with TPR. The summary sensitivity and specificity of general PET for identifying PsP were 0.86 [95% confidence interval (CI): 0.77-0.91] and 0.84 (95% CI: 0.79-0.88), respectively. The statistical heterogeneity was explained by sample size, study design, World Health Organization (WHO) grade, gold standard, and radiotracer type. The summary sensitivity and specificity of O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET PET) were 0.80 (95% CI: 0.68-0.88) and 0.81 (95% CI: 0.75-0.85), respectively. The maximum tumor-to-brain ratio (TBRmax) and the mean tumor-to-brain ratio (TBRmean) both showed excellent diagnostic performance in 18F-FET studies, the summary sensitivity was 0.83 (95% CI: 0.72-0.91) and 0.79 (95% CI: 0.65-0.98), respectively, and the specificity was 0.76 (95% CI: 0.68-0.84) and 0.78 (95% CI: 0.64-0.88), respectively. Conclusions PET imaging is generally accurate in identifying glioma PsP. Considering the credibility of meta-evidence and the practicability of using radiotracer, 18F-FET PET holds the highest clinical value, while TBRmax and TBRmean should be regarded as reliable parameters. PET used with the radiotracers and multiple-parameter combinations of PET with magnetic resonance imaging (MRI) and radiomics analysis have broad research and application prospects, whose diagnostic values for identifying glioma PsP warrant further investigation.
Collapse
Affiliation(s)
- Zhi-Qiang Ouyang
- Department of Radiology, Yan’an Hospital of Kunming City (Yan’an Hospital Affiliated to Kunming Medical University), Kunming, China
| | - Guang-Rong Zheng
- Department of Radiology, Yan’an Hospital of Kunming City (Yan’an Hospital Affiliated to Kunming Medical University), Kunming, China
| | - Xi-Rui Duan
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Xue-Rong Zhang
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Teng-Fei Ke
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Sha-Sha Bao
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Jun Yang
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming, China
| | - Bin He
- Department of Neurosurgery, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng-De Liao
- Department of Radiology, Yan’an Hospital of Kunming City (Yan’an Hospital Affiliated to Kunming Medical University), Kunming, China
| |
Collapse
|
3
|
A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective. Cancers (Basel) 2022; 15:cancers15010090. [PMID: 36612085 PMCID: PMC9817716 DOI: 10.3390/cancers15010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor's margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for "PET" [All fields] AND "glioma" [All fields] AND "resection" [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.
Collapse
|
4
|
Roach JR, Plaha P, McGowan DR, Higgins GS. The role of [ 18F]fluorodopa positron emission tomography in grading of gliomas. J Neurooncol 2022; 160:577-589. [PMID: 36434486 PMCID: PMC9758109 DOI: 10.1007/s11060-022-04177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Gliomas are the most commonly occurring brain tumour in adults and there remains no cure for these tumours with treatment strategies being based on tumour grade. All treatment options aim to prolong survival, maintain quality of life and slow the inevitable progression from low-grade to high-grade. Despite imaging advancements, the only reliable method to grade a glioma is to perform a biopsy, and even this is fraught with errors associated with under grading. Positron emission tomography (PET) imaging with amino acid tracers such as [18F]fluorodopa (18F-FDOPA), [11C]methionine (11C-MET), [18F]fluoroethyltyrosine (18F-FET), and 18F-FDOPA are being increasingly used in the diagnosis and management of gliomas. METHODS In this review we discuss the literature available on the ability of 18F-FDOPA-PET to distinguish low- from high-grade in newly diagnosed gliomas. RESULTS In 2016 the Response Assessment in Neuro-Oncology (RANO) and European Association for Neuro-Oncology (EANO) published recommendations on the clinical use of PET imaging in gliomas. However, since these recommendations there have been a number of studies performed looking at whether 18F-FDOPA-PET can identify areas of high-grade transformation before the typical radiological features of transformation such as contrast enhancement are visible on standard magnetic resonance imaging (MRI). CONCLUSION Larger studies are needed to validate 18F-FDOPA-PET as a non-invasive marker of glioma grade and prediction of tumour molecular characteristics which could guide decisions surrounding surgical resection.
Collapse
Affiliation(s)
- Joy R. Roach
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Neurosurgery, Oxford University Hospital NHS FT, John Radcliffe Hospital, L3 West Wing, Oxford, OX3 9DU UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospital NHS FT, John Radcliffe Hospital, L3 West Wing, Oxford, OX3 9DU UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 7DQ UK
| | - Daniel R. McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Medical Physics and Clinical Engineering, Oxford University Hospital NHS FT, Churchill Hospital, Oxford, OX3 7LE UK
| | - Geoff S. Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ UK
- Department of Oncology, Oxford University Hospitals NHS FT, Oxford, UK
| |
Collapse
|
5
|
Lin Y, Chen-Lung Chou A, Lin X, Wu Z, Ju Q, Li Y, Ye Z, Zhang B. A case of Kernohan-Woltman notch phenomenon caused by an epidural hematoma: the diagnostic and prognostic value of PET/CT imaging. BMC Neurol 2022; 22:419. [DOI: 10.1186/s12883-022-02965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Kernohan-Woltman notch phenomenon (KWNP) classically occurs when a lesion causes compression of the contralateral cerebral peduncle against the tentorium, resulting in ipsilateral hemiparesis. It has been studied clinically, radiologically and electrophysiologically which all confirmed to cause false localizing motor signs. Here, we demonstrate the potential use of fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) to identify KWNP caused by an epidural hematoma.
Case presentation
A 29-year-old male patient post right-sided traumatic brain injury presenting with persistent ipsilateral hemiparesis. Patient underwent decompressive craniotomy and intracranial hematoma evacuation. Brain magnetic resonance imaging in the postoperative period showed a subtle lesion in the left cerebral peduncle. PET/CT was performed to exclude early brain tumor and explain his ipsilateral hemiparesis. PET/CT imaging demonstrated a focal region of intense 18 F-FDG uptake in the left cerebral peduncle. Throughout the treatment in outpatient neurorehabilitation unit, the patient exhibited a gradual recovery of his right hemiparesis.
Conclusion
In our case report, for the first time, PET/CT offered microstructural and functional confirmation of KWNP. Moreover, our case suggests that 18 F-FDG PET/CT may serve as an important reference for the probability of functional recovery.
Collapse
|
6
|
Zhang-Yin JT, Girard A, Bertaux M. What Does PET Imaging Bring to Neuro-Oncology in 2022? A Review. Cancers (Basel) 2022; 14:cancers14040879. [PMID: 35205625 PMCID: PMC8870476 DOI: 10.3390/cancers14040879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Positron emission tomography (PET) imaging is increasingly used to supplement MRI in the management of patient with brain tumors. In this article, we provide a review of the current place and perspectives of PET imaging for the diagnosis and follow-up of from primary brain tumors such as gliomas, meningiomas and central nervous system lymphomas, as well as brain metastases. Different PET radiotracers targeting different biological processes are used to accurately depict these brain tumors and provide unique metabolic and biologic information. Radiolabeled amino acids such as [18F]FDOPA or [18F]FET are used for imaging of gliomas while both [18F]FDG and amino acids can be used for brain metastases. Meningiomas can be seen with a high contrast using radiolabeled ligands of somatostatin receptors, which they usually carry. Unconventional tracers that allow the study of other biological processes such as cell proliferation, hypoxia, or neo-angiogenesis are currently being studied for brain tumors imaging. Abstract PET imaging is being increasingly used to supplement MRI in the clinical management of brain tumors. The main radiotracers implemented in clinical practice include [18F]FDG, radiolabeled amino acids ([11C]MET, [18F]FDOPA, [18F]FET) and [68Ga]Ga-DOTA-SSTR, targeting glucose metabolism, L-amino-acid transport and somatostatin receptors expression, respectively. This review aims at addressing the current place and perspectives of brain PET imaging for patients who suffer from primary or secondary brain tumors, at diagnosis and during follow-up. A special focus is given to the following: radiolabeled amino acids PET imaging for tumor characterization and follow-up in gliomas; the role of amino acid PET and [18F]FDG PET for detecting brain metastases recurrence; [68Ga]Ga-DOTA-SSTR PET for guiding treatment in meningioma and particularly before targeted radiotherapy.
Collapse
Affiliation(s)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
7
|
Girard A, François M, Chaboub N, Le Reste PJ, Devillers A, Saint-Jalmes H, Le Jeune F, Palard-Novello X. Impact of point-spread function reconstruction on dynamic and static 18F-DOPA PET/CT quantitative parameters in glioma. Quant Imaging Med Surg 2022; 12:1397-1404. [PMID: 35111633 DOI: 10.21037/qims-21-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Quantification of dynamic and static parameters extracted from 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA, FDOPA) positron emission tomography (PET)/computed tomography (CT) plays a critical role for glioma assessment. The objective of the present study was to investigate the impact of point-spread function (PSF) reconstruction on these quantitative parameters. METHODS Fourteen patients with untreated gliomas and investigated with FDOPA PET/CT were analyzed. The distribution of the 14 cases was as follows: 6 astrocytomas-isocitrate dehydrogenase-mutant; 2 oligodendrogliomas/1p19q-codeleted-isocitrate dehydrogenase-mutant; and 6 isocitrate dehydrogenase-wild-type glioblastomas. A 0-20-min dynamic images (8×15, 2×30, 2×60, and 3×300 s post-injection) and a 0-20-min static image were reconstructed with and without PSF. Tumoral volumes-of-interest were generated on all of the PET series and the background volumes-of-interest were generated on the 0-20-min static image with and without PSF. Static parameters (SUVmax and SUVmean) of the tumoral and the background volumes-of-interest and kinetic parameters (K1 and k2) of the tumoral volumes-of-interest extracted from using full kinetic analysis were provided. PSF and non-PSF quantitative parameters values were compared. RESULTS Thirty-three tumor volumes-of-interest and 14 background volumes-of-interest were analyzed. PSF images provided higher tumor SUVmax than non-PSF images for 23/33 VOIs [median SUVmax =3.0 (range, 1.4-10.2) with PSF vs. 2.7 (range, 1.4-9.1) without PSF; P<0.001] and higher tumor SUVmean for 13/33 volumes-of-interest [median SUVmean =2.0 (range, 0.8-7.6) with PSF vs. 2.0 (range, 0.8-7.4) without PSF; P=0.002]. K1 and k2 were significantly lower with PSF than without PSF [respectively median K1 =0.077 mL/ccm/min (range, 0.043-0.445 mL/ccm/min) with PSF vs. 0.101 mL/ccm/min (range, 0.055-0.578 mL/ccm/min) without PSF; P<0.001 and median k2 =0.070 min-1 (range, 0.025-0.146 min-1) with PSF vs. 0.081 min-1 (range, 0.027-0.180 min-1) without PSF; P<0.001]. Background SUVmax and SUVmean were statistically unaffected [respectively median SUVmax =1.7 (range, 1.3-2.0) with PSF vs. 1.7 (range, 1.3-1.9) without PSF; P=0.346 and median SUVmean =1.5 (range, 1.0-1.8) with PSF vs. 1.5 (range, 1.0-1.7) without PSF; P=0.371]. CONCLUSIONS The present study confirms that PSF significantly increases tumor activity concentrations measured on PET images. PSF algorithms for quantitative PET/CT analysis should be used with caution, especially for quantification of kinetic parameters.
Collapse
Affiliation(s)
- Antoine Girard
- Univ Rennes, CLCC Eugène Marquis, Noyau Gris Centraux EA 4712, Rennes, France
| | - Madani François
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, Rennes, France
| | - Nibras Chaboub
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, Rennes, France
| | | | - Anne Devillers
- Univ Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, Rennes, France
| | | | - Florence Le Jeune
- Univ Rennes, CLCC Eugène Marquis, Noyau Gris Centraux EA 4712, Rennes, France
| | | |
Collapse
|
8
|
Effects of Carbidopa Premedication on 18F-FDOPA PET Imaging of Glioma: A Multiparametric Analysis. Cancers (Basel) 2021; 13:cancers13215340. [PMID: 34771504 PMCID: PMC8582429 DOI: 10.3390/cancers13215340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary 18F-FDOPA PET imaging is routinely used and recommended to assess gliomas. Carbidopa is a peripheral enzyme inhibitor. Carbidopa premedication increases the radiotracer uptake on static images. None of the evidence-based data available to date recommends carbidopa premedication. Our study therefore determined the impact of carbidopa premedication on static, radiomics and dynamic parameters for 18F-FDOPA PET brain tumor imaging. We show that carbidopa premedication leads to higher SUV and TTP dynamic parameters and impacts SUV-dependent radiomics by the same magnitude in healthy brains and tumors. The carbidopa effect is therefore compensated for by correcting for the tumor-to-healthy-brain ratio, a significant advantage for harmonizing data for multicentric studies. Results were obtained from simulations of time-activity curves using compartmental modeling. Abstract Purpose: This study aimed to determine the impact of carbidopa premedication on static, dynamic and radiomics parameters of 18F-FDOPA PET in brain tumors. Methods: The study included 54 patients, 18 of whom received carbidopa, who underwent 18F-FDOPA PET for newly diagnosed gliomas. SUV-derived, 105 radiomics features and TTP dynamic parameters were extracted from volumes of interest in healthy brains and tumors. Simulation of the effects of carbidopa on time-activity curves were generated. Results: All static and TTP dynamic parameters were significantly higher in healthy brain regions of premedicated patients (ΔSUVmean = +53%, ΔTTP = +48%, p < 0.001). Furthermore, carbidopa impacted 81% of radiomics features, of which 92% correlated with SUVmean (absolute correlation coefficient ≥ 0.4). In tumors, premedication with carbidopa was an independent predictor of SUVmean (ΔSUVmean = +52%, p < 0.001) and TTP (ΔTTP = +24%, p = 0.025). All parameters were no longer significantly modified by carbidopa premedication when using ratios to healthy brain. Simulated data confirmed that carbidopa leads to higher tumor TTP values, corrected by the ratios. Conclusion: In 18F-FDOPA PET, carbidopa induces similarly higher SUV and TTP dynamic parameters and similarly impacts SUV-dependent radiomics in healthy brain and tumor regions, which is compensated for by correcting for the tumor-to-healthy-brain ratio. This is a significant advantage for multicentric study harmonization.
Collapse
|