1
|
Buchholz M, Lausser L, Schenk M, Earl J, Lawlor RT, Scarpa A, Sanjuanbenito A, Carrato A, Malats N, Tjaden C, Giese NA, Büchler M, Hackert T, Kestler HA, Gress TM. Combined analysis of a serum mRNA/miRNA marker signature and CA 19-9 for timely and accurate diagnosis of recurrence after resection of pancreatic ductal adenocarcinoma: A prospective multicenter cohort study. United European Gastroenterol J 2025; 13:353-363. [PMID: 39453683 PMCID: PMC11999032 DOI: 10.1002/ueg2.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND AND AIMS Timely and accurate detection of tumor recurrence in pancreatic ductal adenocarcinoma (PDAC) patients is an urgent and unmet medical need. This study aimed to develop a noninvasive molecular diagnostic procedure for the detection of recurrence after PDAC resection based on quantification of circulating mRNA and miRNA biomarkers in serum samples. METHODS In a multicentric study, serum samples from a total of 146 patients were prospectively collected after resection. Samples were classified into a "No Evidence of Disease" and a "Recurrence" group based on clinical follow-up data. A multianalyte biomarker panel was composed of mRNAs and miRNA markers and simultaneously analyzed in serum samples using custom microfluidic qPCR arrays (TaqMan array cards). A diagnostic algorithm was developed combining a 7-gene marker signature with CA19-9 data. RESULTS The best-performing marker combination achieved 90% diagnostic accuracy in predicting the presence of tumor recurrence (98% sensitivity; 84% specificity), clearly outperforming the singular CA 19-9 analysis. Moreover, time series data obtained by analyzing successively collected samples from 5 patients during extended follow-up suggested that molecular diagnosis has the potential to detect recurrence earlier than routine clinical procedures. CONCLUSIONS TaqMan array card measurements were found to be biologically valid and technically reproducible. The BioPac multianalyte marker panel is capable of sensitive and accurate detection of recurrence in patients resected for PDAC using a simple blood test. This could allow a closer follow-up using shorter time intervals than currently used for imaging, thus potentially prompting an earlier work-up with additional modalities to allow for earlier therapeutic intervention. This study provides a promising approach for improved postoperative monitoring of resected PDAC patients, which is an urgent and unmet clinical need.
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/surgery
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/pathology
- CA-19-9 Antigen/blood
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Male
- Pancreatic Neoplasms/surgery
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/diagnosis
- Female
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Middle Aged
- Aged
- Prospective Studies
- RNA, Messenger/blood
- MicroRNAs/blood
- Sensitivity and Specificity
- Pancreatectomy
- Aged, 80 and over
Collapse
Affiliation(s)
- Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and InfectiologyPhilipps‐University and University Hospital MarburgMarburgGermany
| | - Ludwig Lausser
- Institute of Medical Systems BiologyUlm UniversityUlmGermany
- Fakultät InformatikBiomedizinische InformatikTechnische Hochschule IngolstadtIngolstadtGermany
| | - Miriam Schenk
- Chirurgische Klinik / Europäisches PankreaszentrumUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers GroupInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)CIBERONCMadridSpain
| | - Rita T. Lawlor
- Centre for Applied Research on CancerUniversity of Verona ‐ Policlinico G.B. RossiVeronaItaly
| | - Aldo Scarpa
- Centre for Applied Research on CancerUniversity of Verona ‐ Policlinico G.B. RossiVeronaItaly
| | - Alfonso Sanjuanbenito
- Pancreatic and Biliopancreatic Surgery UnitRamón y Cajal University HospitalCIBERONCMadridSpain
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers GroupInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)CIBERONCMadridSpain
| | - Nuria Malats
- Spanish National Cancer Research Centre (CNIO)Genetic and Molecular EpidemiologyMadridSpain
| | - Christine Tjaden
- Chirurgische Klinik / Europäisches PankreaszentrumUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Nathalia A. Giese
- Chirurgische Klinik / Europäisches PankreaszentrumUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Markus Büchler
- Chirurgische Klinik / Europäisches PankreaszentrumUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Thilo Hackert
- Chirurgische Klinik / Europäisches PankreaszentrumUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUlm UniversityUlmGermany
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Metabolism and InfectiologyPhilipps‐University and University Hospital MarburgMarburgGermany
| | | |
Collapse
|
2
|
Stosic K, Senar OA, Tarfouss J, Bouchart C, Navez J, Van Laethem JL, Arsenijevic T. A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells 2023; 13:3. [PMID: 38201207 PMCID: PMC10778087 DOI: 10.3390/cells13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant diseases, with a mortality rate being close to incidence. Due to its heterogeneity and plasticity, as well as the lack of distinct symptoms in the early phases, it is very often diagnosed at an advanced stage, resulting in poor prognosis. Traditional tissue biopsies remain the gold standard for making a diagnosis, but have an obvious disadvantage in their inapplicability for frequent sampling. Blood-based biopsies represent a non-invasive method which potentially offers easy and repeated sampling, leading to the early detection and real-time monitoring of the disease and hopefully an accurate prognosis. Given the urgent need for a reliable biomarker that can estimate a patient's condition and response to an assigned treatment, blood-based biopsies are emerging as a potential new tool for improving patients' survival and surveillance. In this article, we discuss the current advances and challenges in using liquid biopsies for pancreatic cancer, focusing on circulating tumour DNA (ctDNA), extracellular vesicles (EVs), and circulating tumour cells (CTCs), and compare the performance and reliability of different biomarkers and combinations of biomarkers.
Collapse
Affiliation(s)
- Kosta Stosic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Jawad Tarfouss
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Christelle Bouchart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Julie Navez
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
3
|
Mauro N, Cillari R, Gagliardo C, Utzeri MA, Marrale M, Cavallaro G. Gadolinium-Doped Carbon Nanodots as Potential Anticancer Tools for Multimodal Image-Guided Photothermal Therapy and Tumor Monitoring. ACS APPLIED NANO MATERIALS 2023; 6:17206-17217. [PMID: 37772264 PMCID: PMC10526686 DOI: 10.1021/acsanm.3c03583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/30/2023]
Abstract
This study focuses on the synthesis and characterization of gadolinium-doped carbon nanodots (CDs-Gd) and their potential applications in multimodal imaging and precision cancer therapy. CDs-Gd were synthesized through a solvothermal decomposition method combining citric acid, GdCl3, and urea. The incorporation of Gd3+ ions within the carbonaceous structure resulted in stable CDs-Gd with a peculiar architecture that retained optical and paramagnetic properties. Combined characterization techniques confirmed the presence of pH-sensitive COOH functions on the CDs-Gd surface along with the unique lattice structure induced by Gd3+ doping. The optical properties of CDs-Gd exhibited a tunable emission spectrum displaying blue-green emission with pH-dependent behavior. Additionally, CDs-Gd exhibited contrast-enhancing properties in T1-weighted magnetic resonance imaging (MRI) experiments. MRI acquisitions at different Gd3+ concentrations and pH values demonstrated the potential of CDs-Gd as contrast agents for monitoring pH changes in an aqueous environment. We found that the relaxivity of CDs-Gd at pH 5.5 (tumor, 11.3 mM-1 s-1) is roughly 3-fold higher than that observed at pH 7.4 (physiological, 5.0 mM-1 s-1) and outperformed clinical standards such as γ-butyrol (3.3 mM-1 s-1). Monitoring pH changes in tumor microenvironment (TME) is crucial for evaluating the effectiveness of anticancer treatments and understanding tumor progression. Furthermore, CDs-Gd demonstrated concentration-dependent photothermal conversion ability in the near-infrared (NIR) region, allowing for efficient heat generation under laser irradiation. This indicates the potential application of CDs-Gd in image-guided photothermal therapy (IG-PTT) for cancer treatment. The in vitro studies on MCF-7 (breast cancer) and 16-HBE (healthy bronchial epithelium) cell lines demonstrated that CDs-Gd exhibited high biocompatibility (cell viability >80%). However, upon NIR activation, they showed potent anticancer effects by inhibiting tumor cell proliferation and inducing apoptosis selectively in cancer cells. In conclusion, the synthesized CDs-Gd nanoparticles possess unique optical, photothermal, and MRI contrast properties, making them promising candidates for multimodal imaging-guided precision cancer therapy applications.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Roberta Cillari
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Cesare Gagliardo
- Department
of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Via del Vespro 129, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
| | - Maurizio Marrale
- Department
of Physics and Chemistry “Emilio Segrè”, University of Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy
- National
Institute for Nuclear Physics (INFN), Catania Division, Via Santa Sofia 64, 95123 Catania, Italy
- Advanced
Technology Environment Network Center, Viale Delle Scienze Ed. 18, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory
of Biocompatible Polymers, Department of “Scienze e Tecnologie
Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, Via Archirafi, 32, 90123 Palermo, Italy
- Advanced
Technology Environment Network Center, Viale Delle Scienze Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
4
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|