1
|
Barrea L, Verde L, Annunziata G, Antiga E, Camajani E, Caprio M, Carbonelli MG, Carducci A, Cava E, Di Marco G, Grassi D, Guida S, Martinelli B, Marzano AV, Moltrasio C, Petrelli M, Prignano F, Rongioletti F, Savastano S, Paolini B, Bagnato C, Argenziano G, Cicero AFG, Colao A, Ferone D, Aimaretti G, Muscogiuri G. Medical Nutrition Therapy in Dermatological Diseases: A Joint Consensus Statement of the Italian Association of Dietetics and Clinical Nutrition (ADI), the Italian Society of Dermatology and Sexually Transmitted Diseases (SIDeMaST), the Italian Society of Nutraceuticals (SINut), Club Ketodiets and Nutraceuticals "KetoNut-SINut" and the Italian Society of Endocrinology (SIE), Club Nutrition, Hormones and Metabolism. Curr Obes Rep 2025; 14:42. [PMID: 40358870 PMCID: PMC12075311 DOI: 10.1007/s13679-025-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Dermatological diseases such as acne, hidradenitis suppurativa (HS), and psoriasis are driven by chronic inflammation and oxidative stress. Emerging evidence highlights the role of nutrition in modulating these conditions, particularly through dietary patterns rich in antioxidants, polyphenols, and unsaturated fatty acids. RECENT FINDINGS: The Mediterranean diet (MedDiet) has demonstrated potential benefits due to its anti-inflammatory and immunomodulatory effects, while very low-energy ketogenic therapy (VLEKT) has shown promise in rapidly improving disease severity. Specific nutrients, including omega-3 fatty acids, probiotics, and micronutrients, may further contribute to disease management. However, the current literature is limited by small-scale studies and the lack of standardized dietary guidelines. PURPOSE OF REVIEW: This Consensus Statement, developed collaboratively by the Italian Association of Dietetics and Clinical Nutrition (ADI), the Italian Society of Dermatology and Sexually Transmitted Diseases (SIDeMaST), the Italian Society of Nutraceuticals (SINut), Club Ketodiets and Nutraceuticals "KetoNut-SINut" and the Italian Society of Endocrinology (SIE), Club Nutrition, Hormones and Metabolism, aimed to establish an evidence-based framework for medical nutrition therapy (MNT) of the most common inflammatory skin diseases, including acne, HS and psoriasis.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento Di Psicologia E Scienze Della Salute, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy.
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, Naples, Italy
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA
| | - Giuseppe Annunziata
- Facoltà Di Scienze Umane, Della Formazione E Dello Sport, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143, Naples, Italy
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Elisabetta Camajani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via Di Val Cannuta 247, 00166, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via Di Val Cannuta 247, 00166, Rome, Italy
| | - Maria Grazia Carbonelli
- Clinical Nutrition and Dietetics, San Camillo Forlanini Hospital, Rome Cir.Ne Gianicolense 87, 00152, Rome, Italy
| | - Augusto Carducci
- Internal Medicine Unit-Val Vibrata Hospital-Sant'Omero (TE)-Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Edda Cava
- Clinical Nutrition and Dietetics, San Camillo Forlanini Hospital, Rome Cir.Ne Gianicolense 87, 00152, Rome, Italy
| | - Giorgia Di Marco
- Department of Dermatology, Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Grassi
- Internal Medicine Unit-Val Vibrata Hospital-Sant'Omero (TE)-Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefania Guida
- Department of Dermatology, Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Martinelli
- Department of Medical Sciences, Unit of Dietetics and Clinical Nutrition, Santa Maria Alle Scotte Hospital, University of Siena, 53100, Siena, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, 20122, Milan, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Massimiliano Petrelli
- Clinic of Endocrinology and Metabolic Diseases, Polytechnic University of Ancona, 60100, Ancona, Italy
| | - Francesca Prignano
- Department of Health Sciences, Section of Dermatology, University of Florence, Ancona, Italy
| | - Franco Rongioletti
- Department of Dermatology, Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Savastano
- Dipartimento Di Medicina Clinica E Chirurgia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Naples, Italy
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Endocrinologia, Diabetologia, Andrologia e Nutrizione, AOU Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Barbara Paolini
- UOSA of Dietetics and Clinical Nutrition, Azienda Ospedaliera Universitaria Senese, Policlinico Santa Maria Alle Scotte, Siena, Italy
| | - Carmela Bagnato
- UOSD Clinical Nutrition and Dietetic, Hospital Matera, 75100, Matera, Italy
| | | | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Unit, Medical and Surgical Sciences Dept, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS AOU Di Bologna, Bologna, Italy
| | - Annamaria Colao
- Dipartimento Di Medicina Clinica E Chirurgia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Naples, Italy
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Endocrinologia, Diabetologia, Andrologia e Nutrizione, AOU Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Diego Ferone
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, 16132, Genoa, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giovanna Muscogiuri
- Dipartimento Di Medicina Clinica E Chirurgia, Unità Di Endocrinologia, Università Degli Studi Di Napoli Federico II, Naples, Italy.
- Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), Dipartimento Di Endocrinologia, Diabetologia, Andrologia e Nutrizione, AOU Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy.
| |
Collapse
|
2
|
Zewail M, Abbas H, Sayed NE, Abd-El-Azim H. Intradermal delivery of teriflunomide loaded emulsomes using hollow microneedles for effective minimally invasive psoriasis management. Eur J Pharm Biopharm 2025; 210:114692. [PMID: 40081673 DOI: 10.1016/j.ejpb.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Conventional topical psoriasis treatments suffer from limited delivery to affected areas along with skin irritation due to high local drug concentration. Herein an attempt to improve the delivery of leflunomide's active metabolite (teriflunomide (TER)) by improving its solubility through nanoencapsulation in emulsomes (EMLs) besides ensuring effective intradermal delivery using hollow microneedles. Evaluation of colloidal characteristics of EMLs, encapsulation efficiency and drug release were performed. Additionally, the antipsoriatic activity in an imiquimod-induced psoriatic mouse model was evaluated by the measurement of inflammatory mediators' levels and histopathological assessment of anatomized skin. The particle size of the chosen EMLs formulation was 147.9 nm and the zeta potential value was -21.7. Entrapment efficiency was 97.23 % and EMLs provided sustained drug release for 48 h. No statistically significant differences in the in vivo levels of NF-KB, IL 8, MMP1, GSH, SOD and catalase between the animals treated by TER-EMLs and the negative control cohort were observed. Also, histopathological inspection of dissected skin samples reflected the superiority of TER-EMLs over TER suspension. Collectively, combining nanoencapsulation and hollow microneedles application improved TER properties and ensured effective TER delivery to the affected psoriatic areas.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt.
| | - Haidy Abbas
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt; Postdoc Brigham and Women's Hospital, Harvard Medical School, Harvard University, United States
| |
Collapse
|
3
|
Saranyuk R, Bushueva O, Efanova E, Solodilova M, Churnosov M, Polonikov A. Genetic Interactions of Phase II Xenobiotic-Metabolizing Enzymes GSTO1 and GCLC in Relation to Alcohol Abuse and Psoriasis Risk. J Xenobiot 2025; 15:60. [PMID: 40278165 PMCID: PMC12028938 DOI: 10.3390/jox15020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/12/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
The present pilot study aimed to investigate whether common single nucleotide polymorphisms (SNPs) in the gene encoding glutathione S-transferase omega 1 (GSTO1), both individually and in combination with variants of the catalytic subunit of the glutamate cysteine ligase (GCLC) gene and environmental risk factors, are associated with the risk of psoriasis. The research included a total of 944 participants, comprising 474 individuals diagnosed with psoriasis and 470 healthy control subjects. Five common SNPs in the GSTO1 gene-specifically, rs11191736, rs34040810, rs2289964, rs11191979, and rs187304410-were genotyped in the study groups using the MassARRAY-4 system. The allele rs187304410-A (OR = 0.19, 95% CI 0.04-0.86, Pperm = 0.02) and the genotype rs187304410-G/A (OR = 0.19, 95% CI 0.04-0.85, Pperm = 0.01) were found to be associated with psoriasis in females. The model-based multifactor dimensionality reduction approach facilitated the identification of higher-order epistatic interactions between the variants of the GSTO1 and GCLC genes (Pperm < 0.0001). These interactions, along with the risk factor of alcohol abuse, collectively contribute to the pathogenesis of psoriasis. This study is the first to demonstrate that polymorphisms in the GSTO1 gene, both individually and in combination with variants of the GCLC gene and alcohol abuse, are associated with an increased risk of psoriasis.
Collapse
Affiliation(s)
- Roman Saranyuk
- Center for Medical Examinations and Prevention, 2 Leninsky Komsomol Avenue, 305026 Kursk, Russia;
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (O.B.); (E.E.)
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (O.B.); (E.E.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Ekaterina Efanova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (O.B.); (E.E.)
- Medvenka Central District Hospital, 68 Sovetskaya Street, 307030 Medvenka, Russia
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia;
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
4
|
Zewail M, Abbas H, El Sayed N, Abd-El-Azim H. Combined photodynamic therapy and hollow microneedle approach for effective non-invasive delivery of hypericin for the management of imiquimod-induced psoriasis. J Drug Target 2024; 32:941-952. [PMID: 38853622 DOI: 10.1080/1061186x.2024.2365930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Yang Y, Zheng X, Lv H, Tang B, Zhong Y, Luo Q, Bi Y, Yang K, Zhong H, Chen H, Lu C. The causal relationship between serum metabolites and the risk of psoriasis: a Mendelian randomization and meta-analysis study. Front Immunol 2024; 15:1343301. [PMID: 38529280 PMCID: PMC10961426 DOI: 10.3389/fimmu.2024.1343301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Objective To explore the influence of serum metabolites on the risk of psoriasis. Methods In the initial stage, we applied Mendelian randomization to evaluate the association between 1,400 serum metabolites and the risk of psoriasis. Causal effects were primarily assessed through the Inverse-Variance Weighted method and Wald Ratio's odds ratios, and 95% confidence intervals. False Discovery Rate was used for multiple comparison corrections. Sensitivity analyses were conducted using Cochran's Q Test, MR-PRESSO. MR-Steiger Test was employed to check for reverse causality. In the validation stage, we sought other sources of psoriasis GWAS data to verify the initial results and used meta-analysis to combine the effect sizes to obtain robust causal relationships. In addition, we also conducted metabolic pathway enrichment analysis on known metabolites that have a causal relationship with the risk of psoriasis in both stages. Results In the initial stage, we identified 112 metabolites causally associated with psoriasis, including 32 metabolite ratios and 80 metabolites (69 known and 11 unknown). In the validation stage, 24 metabolites (16 known, 1 unknown, and 7 metabolite ratios) were confirmed to have a causal relationship with psoriasis onset. Meta-analysis results showed that the overall effect of combined metabolites was consistent with the main analysis in direction and robust in the causal relationship with psoriasis onset. Of the 16 known metabolites, most were attributed to lipid metabolism, with 5 as risk factors and 8 as protective factors for psoriasis. Peptidic metabolite Gamma-glutamylvaline levels had a negative causal relationship with psoriasis, while exogenous metabolite Catechol sulfate levels and amino acid 3-methylglutaconate levels had a positive causal relationship with the disease onset. The metabolites associated with psoriasis risk in the two stages are mainly enriched in the following metabolic pathways: Glutathione metabolism, Alpha Linolenic Acid and Linoleic Acid Metabolism, Biosynthesis of unsaturated fatty acids, Arachidonic acid metabolism, Glycerophospholipid metabolism. Conclusion Circulating metabolites may have a potential causal relationship with psoriasis risk, and targeting specific metabolites may benefit psoriasis diagnosis, disease assessment, and treatment.
Collapse
Affiliation(s)
- Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiying Lv
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyuan Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Tiucă OM, Morariu SH, Mariean CR, Tiucă RA, Nicolescu AC, Cotoi OS. Impact of Blood-Count-Derived Inflammatory Markers in Psoriatic Disease Progression. Life (Basel) 2024; 14:114. [PMID: 38255729 PMCID: PMC10820213 DOI: 10.3390/life14010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a chronic immune-mediated disease, linked to local and systemic inflammation and predisposing patients to a higher risk of associated comorbidities. Cytokine levels are not widely available for disease progression monitoring due to high costs. Validated low-cost and reliable markers are needed for assessing disease progression and outcome. This study aims to assess the reliability of blood-count-derived inflammatory markers as disease predictors and to identify prognostic factors for disease severity. Patients fulfilling the inclusion criteria were enrolled in this study. Patients were divided into three study groups according to disease severity measured by the Body Surface Area (BSA) score: mild, moderate, and severe psoriasis. White blood cell count (WBC), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), derived neutrophil-to-lymphocyte ratio (d-NLR), systemic immune index (SII), systemic inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI) positively were correlated with disease severity (p < 0.005). d-NLR, NLR, and SII are independent prognostic factors for mild and moderate psoriasis (p < 0.05). d-NLR is the only independent prognostic factor for all three study groups. Moderate psoriasis is defined by d-NLR values between 1.49 and 2.19. NLR, PLR, d-NLR, MLR, SII, SIRI, and AISI are useful indicators of systemic inflammation and disease severity in psoriasis.
Collapse
Affiliation(s)
- Oana Mirela Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Silviu Horia Morariu
- Dermatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Dermatology Clinic, Mures Clinical County Hospital, 540342 Targu Mures, Romania
| | - Claudia Raluca Mariean
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Robert Aurelian Tiucă
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Endocrinology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Endocrinology Department, Mures Clinical County Hospital, 540139 Targu Mures, Romania
| | | | - Ovidiu Simion Cotoi
- Pathophysiology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| |
Collapse
|
7
|
Jin Q, Ren F, Song P. The association between ACE inhibitors and psoriasis based on the drug-targeted Mendelian randomization and real-world pharmacovigilance analyses. Expert Rev Clin Pharmacol 2024; 17:93-100. [PMID: 38078460 DOI: 10.1080/17512433.2023.2292605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Although a growing number of observational studies suggest that angiotensin-converting enzyme inhibitors (ACEIs) intake may be a risk factor for psoriasis, evidence is still insufficient to draw definitive conclusions. RESEARCH DESIGN AND METHODS Drug-targeted Mendelian randomization (DTMR) was used to analyze the causality between genetic proxied ACEIs and psoriasis. Furthermore, we performed a disproportionality analysis based on the FDA adverse event reporting system (FAERS) database to identify more suspicious subclasses of ACEIs. RESULTS Using two kinds of genetic proxy instruments, the present DTMR research identified genetic proxied ACEIs as risk factors for psoriasis. Furthermore, our disproportionality analysis revealed that ramipril, trandolapril, perindopril, lisinopril, and enalapril were associated with the risk of psoriasis, which validates and refines the findings of the DTMR. CONCLUSIONS Our integrative study verified that ACEIs, especially ramipril, trandolapril, perindopril, lisinopril, and enalapril, tended to increase the risk of psoriasis statistically.
Collapse
Affiliation(s)
- Qiubai Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Yao P, Jia Y, Kan X, Chen J, Xu J, Xu H, Shao S, Ni B, Tang J. Identification of ADAM23 as a Potential Signature for Psoriasis Using Integrative Machine-Learning and Experimental Verification. Int J Gen Med 2023; 16:6051-6064. [PMID: 38148887 PMCID: PMC10750783 DOI: 10.2147/ijgm.s441262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Background Psoriasis is a common chronic, recurrent, and inflammatory skin disease. Identifying novel and potential biomarkers is valuable in the treatment and diagnosis of psoriasis. The goal of this study was to identify novel key biomarkers of psoriasis and analyze the potential underlying mechanisms. Methods Psoriasis-related datasets were downloaded from the Gene Expression Omnibus database to screen differential genes in the datasets. Functional and pathway enrichment analyses were performed on the differentially expressed genes (DEGs). Candidate biomarkers for psoriasis were identified from the GSE30999 and GSE6710 datasets using four machine learning algorithms, namely, random forest (RF), least absolute shrinkage and selection operator (LASSO) logistic regression, weighted gene co-expression network analysis (WGCNA), and support vector machine recursive feature elimination (SVM-RFE), and were validated using the GSE41662 dataset. Next, we used CIBERSORT and single-cell RNA analysis to explore the relationship between ADAM23 and immune cells. Finally, we validated the expression of the identified biomarkers expressions in human and mouse experiments. Results A total of 709 overlapping DEGs were identified, including 426 upregulated and 283 downregulated genes. Enhanced by enrichment analysis, the differentially expressed genes (DEGs) were spatially arranged in relation to immune cell involvement, immune-activating processes, and inflammatory signals. Based on the enrichment analysis, the DEGs were mapped to immune cell involvement, immune-activating processes, and inflammatory signals. Four machine learning strategies and single-cell RNA sequencing analysis showed that ADAM23, a disintegrin and metalloprotease, may be a unique, critical biomarker with high diagnostic accuracy for psoriasis. Based on CIBERSORT analysis, ADAM23 was found to be associated with a variety of immune cells, such as macrophages and mast cells, and it was upregulated in the macrophages of psoriatic lesions in patients and mice. Conclusion ADAM23 may be a potential biomarker in the diagnosis of psoriasis and may contribute to the pathogenesis by regulating immunological activity in psoriatic lesions.
Collapse
Affiliation(s)
- Pingping Yao
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yuying Jia
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Xuewei Kan
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jiaqi Chen
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jinliang Xu
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Huichao Xu
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Shuyang Shao
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, 400038, People’s Republic of China
| | - Jun Tang
- Department of Dermatology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| |
Collapse
|
9
|
Wright EB, Lannigan DA. Therapeutic targeting of p90 ribosomal S6 kinase. Front Cell Dev Biol 2023; 11:1297292. [PMID: 38169775 PMCID: PMC10758423 DOI: 10.3389/fcell.2023.1297292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The Serine/Threonine protein kinase family, p90 ribosomal S6 kinases (RSK) are downstream effectors of extracellular signal regulated kinase 1/2 (ERK1/2) and are activated in response to tyrosine kinase receptor or G-protein coupled receptor signaling. RSK contains two distinct kinase domains, an N-terminal kinase (NTKD) and a C-terminal kinase (CTKD). The sole function of the CTKD is to aid in the activation of the NTKD, which is responsible for substrate phosphorylation. RSK regulates various homeostatic processes including those involved in transcription, translation and ribosome biogenesis, proliferation and survival, cytoskeleton, nutrient sensing, excitation and inflammation. RSK also acts as a major negative regulator of ERK1/2 signaling. RSK is associated with numerous cancers and has been primarily studied in the context of transformation and metastasis. The development of specific RSK inhibitors as cancer therapeutics has lagged behind that of other members of the mitogen-activated protein kinase signaling pathway. Importantly, a pan-RSK inhibitor, PMD-026, is currently in phase I/1b clinical trials for metastatic breast cancer. However, there are four members of the RSK family, which have overlapping and distinct functions that can vary in a tissue specific manner. Thus, a problem for transitioning a RSK inhibitor to the clinic may be the necessity to develop isoform specific inhibitors, which will be challenging as the NTKDs are very similar to each other. CTKD inhibitors have limited use as therapeutics as they are not able to inhibit the activity of the NTKD but could be used in the development of proteolysis-targeting chimeras.
Collapse
Affiliation(s)
- Eric B. Wright
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Deborah A. Lannigan
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department Pathology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Nirmal G, Liao CC, Lin ZC, Alshetaili A, Hwang E, Yang SC, Fang JY. Topically applied pH-responsive nanogels for alkyl radical-based therapy against psoriasiform hyperplasia. Drug Deliv 2023; 30:2245169. [PMID: 37585684 PMCID: PMC10416745 DOI: 10.1080/10717544.2023.2245169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Phototherapy is a conventional antipsoriatic approach based on oxygen-relevant generation of oxidative stress to inhibit keratinocyte hyperproliferation. However, this therapy can be restricted due to local hypoxia in psoriatic lesions. The generation of alkyl radicals is oxygen-independent and suppresses hyperproliferation. Herein, we established alkyl radical-based therapy to treat psoriatic hyperplasia. Because alkyl radicals are short-lived compounds, we loaded 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) as a precursor of alkyl radicals into the chitosan nanogels to improve stability. The present study presented a topically applied nanogel that led to a pH-responsive network sensitive to skin pH. This pH responsiveness of the nanogels allowed fast alkyl radical release in the target site. The physicochemical properties of the prepared nanogels were determined through size, zeta potential, scanning electron microscopy, and absorption spectroscopy. The antipsoriatic activity was examined with keratinocyte- and animal-based studies. The nanogels displayed a smooth and spherical morphology with a hydrodynamic diameter of 215 nm. This size was largely increased as the environmental pH increased to 6. The nanogels heated at 44 °C produced alkyl radicals to induce keratinocyte death through the necrosis pathway. Bioimaging demonstrated that topically applied nanogels could deliver alkyl radicals into the epidermis. This targeting was accompanied by the accumulation of free radicals in the epidermis according to the 2',7'-dichlorodihydrofluorescein diacetate assay. The imiquimod-stimulated psoriasiform animal model indicated a remarkable reduction in erythema, scaling, and overexpressed cytokines upon topical treatment of the nanogels. The transepidermal water loss of the psoriasiform skin was inhibited from 51.7 to 27.0 g/m2/h, suggesting barrier function recovery by the nanocarriers. The nanogels lowered hyperplasia by decreasing the epidermal thickness from 212 to 89 μm. The incorporation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as a pH-sensitive fluorescence dye in the nanogels could be used to diagnose the severity of the psoriasiform plaque due to the stronger fluorescence of HPTS in skin with lower pH (psoriasiform skin pH = 4.4) than in healthy skin (pH = 4.9). It was possible to deliver the prepared nanogels into the epidermis to restrain hyperplasia without causing cutaneous irritation.
Collapse
Affiliation(s)
- G.R. Nirmal
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taiwan
| |
Collapse
|
11
|
Frątczak A, Miziołek B, Łupicka-Słowik A, Sieńczyk M, Polak K, Bergler-Czop B. Significance of Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) for the Monitoring of Treatment Response to Cyclosporine in Patients with Psoriasis. Life (Basel) 2023; 13:1873. [PMID: 37763277 PMCID: PMC10532527 DOI: 10.3390/life13091873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) may promote development of inflammation in psoriasis, whereas proprotein convertase subtilisin/kexin type 9 (PCSK9) may account for dyslipidemia in some psoriatic patients. The aim of the study was to analyze the influence of cyclosporine therapy on serum levels of NGAL and PCSK9 in patients with psoriasis vulgaris. METHODS Serum samples were obtained before and after three months cyclosporine therapy. Patients were grouped into responders and non-responders to cyclosporine depending on whether they achieved at least 50% reduction of Psoriatic Activity Score Index (PASI), or not. Serum levels of PCSK9 and NGAL were assayed using commercially available ELISA tests. Lipid levels were measured with an enzymatic method. RESULTS There were 40 patients enrolled. A significant decrease in serum NGAL level was seen in cyclosporine responders. No similar dependance was found for PCSK9. Serum PCSK9 concentration correlated with total cholesterol (TChol) and LDL at baseline and after three month treatment. CONCLUSIONS Cyclosporine therapy contributes to the reduction of the NGAL serum but not the PCSK9 concentration. Correlation between the PCSK9 serum level and TChol as well as LDL concentration may help to understand drug induced dyslipidemia after cyclosporine.
Collapse
Affiliation(s)
- Aleksandra Frątczak
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| | - Bartosz Miziołek
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| | - Agnieszka Łupicka-Słowik
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.Ł.-S.); (M.S.)
| | - Marcin Sieńczyk
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.Ł.-S.); (M.S.)
| | - Karina Polak
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| | - Beata Bergler-Czop
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| |
Collapse
|
12
|
Natoli V, Charras A, Hofmann SR, Northey S, Russ S, Schulze F, McCann L, Abraham S, Hedrich CM. DNA methylation patterns in CD4 + T-cells separate psoriasis patients from healthy controls, and skin psoriasis from psoriatic arthritis. Front Immunol 2023; 14:1245876. [PMID: 37662940 PMCID: PMC10472451 DOI: 10.3389/fimmu.2023.1245876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays. The pathophysiological mechanisms underlying psoriasis and PsA are not yet fully understood, but there is evidence pointing towards epigenetic dysregulation involving CD4+ and CD8+ T-cells. Objectives The aim of this study was to investigate disease-associated DNA methylation patterns in CD4+ T-cells from psoriasis and PsA patients that may represent potential diagnostic and/or prognostic biomarkers. Methods PBMCs were collected from 12 patients with chronic plaque psoriasis and 8 PsA patients, and 8 healthy controls. CD4+ T-cells were separated through FACS sorting, and DNA methylation profiling was performed (Illumina EPIC850K arrays). Bioinformatic analyses, including gene ontology (GO) and KEGG pathway analysis, were performed using R. To identify genes under the control of interferon (IFN), the Interferome database was consulted, and DNA Methylation Scores were calculated. Results Numbers and proportions of CD4+ T-cell subsets (naïve, central memory, effector memory, CD45RA re-expressing effector memory cells) did not vary between controls, skin psoriasis and PsA patients. 883 differentially methylated positions (DMPs) affecting 548 genes were identified between controls and "all" psoriasis patients. Principal component and partial least-squares discriminant analysis separated controls from skin psoriasis and PsA patients. GO analysis considering promoter DMPs delivered hypermethylation of genes involved in "regulation of wound healing, spreading of epidermal cells", "negative regulation of cell-substrate junction organization" and "negative regulation of focal adhesion assembly". Comparing controls and "all" psoriasis, a majority of DMPs mapped to IFN-related genes (69.2%). Notably, DNA methylation profiles also distinguished skin psoriasis from PsA patients (2,949 DMPs/1,084 genes) through genes affecting "cAMP-dependent protein kinase inhibitor activity" and "cAMP-dependent protein kinase regulator activity". Treatment with cytokine inhibitors (IL-17/TNF) corrected DNA methylation patterns of IL-17/TNF-associated genes, and methylation scores correlated with skin disease activity scores (PASI). Conclusion DNA methylation profiles in CD4+ T-cells discriminate between skin psoriasis and PsA. DNA methylation signatures may be applied for quantification of disease activity and patient stratification towards individualized treatment.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili (DINOGMI), Genoa, Italy
| | - Amandine Charras
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sigrun R. Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M. Hedrich
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
13
|
Metabolomics analysis reveals cytotoxic effects of ouabain towards psoriatic keratinocytes via impairment of glutathione metabolism. Mol Genet Genomics 2023; 298:567-577. [PMID: 36856826 PMCID: PMC10133367 DOI: 10.1007/s00438-023-02001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Ouabain is a cardiac glycoside long studied for treating heart diseases, but the attempts to evaluate its anti-psoriatic activity have not been reported. We aimed to explore the effects of ouabain on proliferation and metabolism towards psoriatic keratinocytes. In human HaCaT keratinocytes, ouabain potently decreased viability, promoted apoptosis and caused G2/M cycle arrest. Metabolomics analysis indicated that ouabain markedly impaired glutathione metabolism. The solute carrier family 7 member 11 (SLC7A11) is an amino acid transporter highly specific to cysteine, which is critical for glutathione synthesis. Ouabain downregulated SLC7A11, reduced cysteine uptake and subsequently inhibited glutathione synthesis, probably through inhibiting Akt/mTOR/beclin axis that regulate protein activity of SLC7A11. The impaired glutathione synthesis and oxidative stress caused by ouabain may contribute to its cytotoxicity towards psoriatic keratinocytes. Our results provide experimental evidence supporting further study of ouabain as a potential anti-psoriatic agent.
Collapse
|
14
|
Frantz MC, Rozot R, Marrot L. NRF2 in dermo-cosmetic: From scientific knowledge to skin care products. Biofactors 2023; 49:32-61. [PMID: 36258295 DOI: 10.1002/biof.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
The skin is the organ that is most susceptible to the impact of the exposome. Located at the interface with the external environment, it protects internal organs through the barrier function of the epidermis. It must adapt to the consequences of the harmful effects of solar radiation, the various chemical constituents of atmospheric pollution, and wounds associated with mechanical damage: oxidation, cytotoxicity, inflammation, and so forth. In this biological context, a capacity to adapt to the various stresses caused by the exposome is essential; otherwise, more or less serious conditions may develop accelerated aging, pigmentation disorders, atopy, psoriasis, and skin cancers. Nrf2-controlled pathways play a key role at this level. Nrf2 is a transcription factor that controls genes involved in oxidative stress protection and detoxification of chemicals. Its involvement in UV protection, reduction of inflammation in processes associated with healing, epidermal differentiation for barrier function, and hair regrowth, has been demonstrated. The modulation of Nrf2 in the skin may therefore constitute a skin protection or care strategy for certain dermatological stresses and disorders initiated or aggravated by the exposome. Nrf2 inducers can act through different modes of action. Keap1-dependent mechanisms include modification of the cysteine residues of Keap1 by (pro)electrophiles or prooxidants, and disruption of the Keap1-Nrf2 complex. Indirect mechanisms are suggested for numerous phytochemicals, acting on upstream pathways, or via hormesis. While developing novel and safe Nrf2 modulators for skin care may be challenging, new avenues can arise from natural compounds-based molecular modeling and emerging concepts such as epigenetic regulation.
Collapse
Affiliation(s)
| | - Roger Rozot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| | - Laurent Marrot
- Advanced Research, L'OREAL Research & Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
15
|
Burlando M, Campione E, Cuccia A, Malara G, Naldi L, Prignano F, Zichichi L. Real-world use of dimehtyl fumarate in patients with plaque psoriasis: a Delphi-based expert consensus. Dermatol Reports 2022. [DOI: 10.4081/dr.2023.9613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dimethyl fumarate (DMF) was recently approved by the European Medicines Agency for systemic treatment of moderate-to-severe chronic plaque psoriasis. Appropriate management of DMF treatment is required to achieve optimal clinical benefits. Seven dermatology experts gathered online for three meetings to identify consensus on use of DMF in patient selection, drug dosage/titration, side effects management, and follow-up, with the aim to provide guidance on use of DMF for psoriasis in clinical dermatological practice based on literature data and expert opinion. Twenty statements were discussed and voted on using a facilitator-mediated modified Delphi methodology. Strong consensus was reached for all statements (agreement level of 100%). DMF treatment is characterized by dosage flexibility, sustained efficacy, high rates of drug survival, and low potential for drug–drug interactions. It can be used in a broad range of patients, including the elderly or those with comorbidities. Side effects (mainly gastrointestinal disorders, flushing, and lymphopenia) are frequently reported but are generally mild and transient and can be minimized by dosage adjustments and slow titration schedule. Hematologic monitoring throughout treatment course is required to reduce the risk of lymphopenia. This consensus document provides clinical dermatologists with answers on optimal use of DMF to treat psoriasis.
Collapse
|
16
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
17
|
Yang B, Parker RB, Meibohm B, Temrikar ZH, Srivastava A, Laizure SC. Alcohol inhibits the metabolism of dimethyl fumarate to the active metabolite responsible for decreasing relapse frequency in the treatment of multiple sclerosis. PLoS One 2022; 17:e0278111. [PMID: 36441753 PMCID: PMC9704628 DOI: 10.1371/journal.pone.0278111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Dimethyl fumarate (DMF) is a first-line prodrug for the treatment of relapsing-remitting multiple sclerosis (RRMS) that is completely metabolized to monomethyl fumarate (MMF), the active metabolite, before reaching the systemic circulation. Its metabolism has been proposed to be due to ubiquitous esterases in the intestines and other tissues, but the specific enzymes involved are unknown. We hypothesized based on its structure and extensive presystemic metabolism that DMF would be a carboxylesterase substrate subject to interaction with alcohol. We sought to determine the enzymes(s) responsible for the extensive presystemic metabolism of DMF to MMF and the effect of alcohol on its disposition by conducting metabolic incubation studies in human recombinant carboxylesterase-1 (CES1), carboxylesterase-2 (CES2) and human intestinal microsomes (HIM), and by performing a follow-up study in an in vivo mouse model. The in vitro incubation studies demonstrated that DMF was only metabolized to MMF by CES1. Consistent with the incubation studies, the mouse pharmacokinetic study demonstrated that alcohol decreased the maximum concentration and area-under-the-curve of MMF in the plasma and the brain after dosing with DMF. We conclude that alcohol may markedly decrease exposure to the active MMF metabolite in the plasma and brain potentially decreasing the effectiveness of DMF in the treatment of RRMS.
Collapse
Affiliation(s)
- Bing Yang
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert B. Parker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zaid H. Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - S. Casey Laizure
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
18
|
Zhang L, Liu X, Huang M, Wang R, Zhu W, Li Y, Shen L, Li C. Metformin Inhibits HaCaT Cell Proliferation Under Hyperlipidemia Through Reducing Reactive Oxygen Species via FOXO3 Activation. Clin Cosmet Investig Dermatol 2022; 15:1403-1413. [PMID: 35910506 PMCID: PMC9326038 DOI: 10.2147/ccid.s368845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022]
Abstract
Purpose Metformin (MET) has been proved to be effective for the treatment of psoriasis. The mechanisms of its action under the hyperlipidemia have yet to be fully elucidated. Here, we investigated the effect of metformin on the cell proliferation induced by hyperlipidemia and the underlying mechanism in immortalized human keratinocyte cell line (HaCat). Methods Wild-type or FOXO3 knockdown HaCat cells were treated with free fatty acids (FFA) for 10 days and then co-treated with metformin for another 4 days. Triglyceride (TG) level, cell viability, proliferation, apoptosis, antioxidant enzymes, reactive oxygen species (ROS) levels, as well as the transcription activity of FOXO3 were analyzed. Results Metformin decreased HaCaT cell proliferation and induced cell apoptosis after FFA treatment. Metformin was found to significantly increase the expressions and the activities of superoxide dismutase (SOD) as well as catalase (CAT), and reduced the reactive oxygen species (ROS) level. Metformin significantly promoted the autophagy and increase FOXO3 protein level in the nucleus under hyperlipidemia. However, all of the effects from metformin were partially blocked by FOXO3 knockdown. Conclusion This study demonstrated that under the hyperlipidemia, metformin has significant antiproliferation and proapoptosis effects by reducing ROS level as well as increasing autophagy. All of these effects from metformin were through FOXO3-dependent pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiaoling Liu
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Min Huang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rui Wang
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wenwei Zhu
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yu Li
- Department of Dermatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lin Shen
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chengxin Li
- Department of Dermatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|