1
|
Zhang R, Tang Y, Feng X, Lu X, Zhao M, Jin J, Ji X, He H, Zhao L. Targeted modulation of intestinal barrier and mucosal immune-related microbiota attenuates IgA nephropathy progression. Gut Microbes 2025; 17:2458184. [PMID: 39875350 PMCID: PMC11776482 DOI: 10.1080/19490976.2025.2458184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/01/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN. Furthermore, this study examined the effects of chitooligosaccharides (COS) and COS formulation (COSF) with microbiota-targeting function on enhancing intestinal barrier and renal functions. These results revealed that IgAN led to a reduction in α-diversity and structural alterations in the gut microbiota, characterized by an increase in Shigella sonnei, Streptococcus danieliae, Desulfovibrio fairfieldensis, and a decrease in Bifidobacterium pseudolongum and Clostridium leptum. There was also an imbalance in intestinal B-cell immunity and a decrease in the level of tight junction proteins (ZO-1 and Occludin). Intestinal barrier and mucosal immune-related microbiota (Clostridium leptum, unclassified Lachnospiraceae NK4Al36 group, unclassified Clostridia vadinBB60 group, unclassified Oscillospiraceae, and unclassified Roseburia) were enriched through targeted modulation with COS/COSF, enhancing intestinal ZO-1 expression and reducing APRIL/BAFF overexpression, thereby reducing renal damage in IgAN. In conclusion, this study clarified the kidney-gut crosstalk between gut microbiota and IgAN, providing scientific evidence for developing microbiota-targeted food interventions to improve IgAN outcomes.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangru Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxuan Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| |
Collapse
|
2
|
Yao K, Zheng L, Chen W, Xie Y, Liao C, Zhou T. Characteristics, pathogenic and therapeutic role of gut microbiota in immunoglobulin A nephropathy. Front Immunol 2025; 16:1438683. [PMID: 39981255 PMCID: PMC11839611 DOI: 10.3389/fimmu.2025.1438683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent glomerulonephritis in the world, and it is one of the leading causes of end-stage kidney disease. It is now believed that the pathogenesis of IgAN is the mesangial deposition of immune complex containing galactose-deficient IgA1, resulting in glomerular injury. Current treatments for IgAN include supportive care and immunosuppressive therapy. A growing number of studies found that the gut microbiota in IgAN was dysregulated. Gut microbiota may be involved in the development and progression of IgAN through three main aspects: destruction of intestinal barrier, changes in metabolites and abnormal mucosal immunity. Interestingly, therapies by modulating the gut microbiota, such as fecal microbiota transplantation, antibiotic treatment, probiotic treatment, Chinese herbal medicine Zhen Wu Tang treatment, gluten-free diet, and hydroxychloroquine treatment, can improve IgAN. In this review, the alteration of gut microbiota in IgAN, potential pathogenic roles of gut microbiota on IgAN and potential approaches to treat IgAN by modulating the gut microbiota are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Guo Z, He M, Shao L, Li Y, Xiang X, Wang Q. The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease. J Cancer Res Ther 2024; 20:1964-1973. [PMID: 39792405 DOI: 10.4103/jcrt.jcrt_33_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/02/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most important methods for treating a wide range of hematologic malignancies and bone marrow failure diseases. However, graft-versus-host disease (GVHD), a major complication associated with this method, can seriously affect the survival and quality of life of patients. Acute GVHD (aGVHD) occurs within 100 days after transplantation, and gastrointestinal aGVHD (GI-aGVHD) is one of the leading causes of nonrecurrent death after allo-HSCT. In recent years, fecal microbiota transplantation (FMT) has been attempted as an emerging treatment method for various diseases, including aGVHD after HSCT. Studies have shown encouraging preliminary clinical results after the application of FMT in aGVHD, particularly steroid-resistant aGVHD. Additionally, several studies have demonstrated that the gut microbiota plays an important immunomodulatory role in the pathogenesis of GVHD. Consensus guidelines recommend FMT as a secondary option for the treatment of aGVHD. This article aims to review FMT treatment for GI-aGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Zhi Guo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Li
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Di Leo V, Annese F, Papadia F, Russo MS, Giliberti M, Sallustio F, Gesualdo L. Refractory IgA Nephropathy: A Challenge for Future Nephrologists. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:274. [PMID: 38399561 PMCID: PMC10890070 DOI: 10.3390/medicina60020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
IgA nephropathy (IgAN) represents the most prevalent form of primary glomerulonephritis, and, on a global scale, it ranks among the leading culprits behind end-stage kidney disease (ESKD). Presently, the primary strategy for managing IgAN revolves around optimizing blood pressure and mitigating proteinuria. This is achieved through the utilization of renin-angiotensin system (RAS) inhibitors, namely, angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs). As outlined by the KDIGO guidelines, individuals who continue to show a persistent high risk of progressive ESKD, even with comprehensive supportive care, are candidates for glucocorticoid therapy. Despite these therapies, some patients have a disease refractory to treatment, defined as individuals that present a 24 h urinary protein persistently >1 g after at least two rounds of regular steroids (methylprednisolone or prednisone) and/or immunosuppressant therapy (e.g., mycophenolate mofetil), or who do not tolerate regular steroids and/or immunosuppressant therapy. The aim of this Systematic Review is to revise the current literature, using the biomedical database PubMed, to investigate possible therapeutic strategies, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, fecal microbiota transplantation, as well as blockade of complement components.
Collapse
|
5
|
Mocanu A, Bogos RA, Lazaruc TI, Trandafir LM, Lupu VV, Ioniuc I, Alecsa M, Ivanov A, Lupu A, Starcea IM. Exploring a Complex Interplay: Kidney-Gut Axis in Pediatric Chronic Kidney Disease. Nutrients 2023; 15:3609. [PMID: 37630799 PMCID: PMC10457891 DOI: 10.3390/nu15163609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The human intestinal microbiota is a highly intricate structure with a crucial role in promoting health and preventing disease. It consists of diverse microbial communities that inhabit the gut and contribute to essential functions such as food digestion, nutrient synthesis, and immune system development. The composition and function of the gut microbiota are influenced by a variety of factors, including diet, host genetics, and environmental features. In pediatric patients, the gut microbiota is particularly dynamic and vulnerable to disruption from endogenous and exogenous factors. Recent research has focused on understanding the interaction between the gut and kidneys. In individuals with chronic kidney disease, there is often a significant disturbance in the gut microbiota. This imbalance can be attributed to factors like increased levels of harmful toxins from the gut entering the bloodstream, inflammation, and oxidative stress. This review looks at what is known about the link between a child's gut-kidney axis, how dysbiosis, or an imbalance in the microbiome, affects chronic kidney disease, and what treatments, both pharmaceutical and non-pharmaceutical, are available for this condition.
Collapse
Affiliation(s)
- Adriana Mocanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| | - Roxana Alexandra Bogos
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tudor Ilie Lazaruc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mirabela Alecsa
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Ivanov
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, 700309 Iasi, Romania
| |
Collapse
|
6
|
Hu X, Fan R, Song W, Qing J, Yan X, Li Y, Duan Q, Li Y. Landscape of intestinal microbiota in patients with IgA nephropathy, IgA vasculitis and Kawasaki disease. Front Cell Infect Microbiol 2022; 12:1061629. [PMID: 36590596 PMCID: PMC9800820 DOI: 10.3389/fcimb.2022.1061629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To explore the common differential flora of IgAN, Kawasaki disease and IgA vasculitis by screening and analyzing the differential intestinal flora between the three disease groups of IgAN, Kawasaki disease and IgA vasculitis and their healthy controls. Methods Papers on 16srRNA sequencing-related intestinal flora of IgAN, Kawasaki disease and IgA vasculitis were searched in databases, the literature was systematically collated and analysed, the original data was download from the relevant databases, and then the operational taxonomic unit and species classification analysis were performed. Besides, Alpha diversity analysis and Beta diversity analysis were performed to screen for IgAN, Kawasaki disease and I1gA vasculitis groups and finally compare the common intestinal differential flora among the three groups. Results Among the common differential flora screened, Lachnospiracea_incertae_sedis was lower in both the IgAN and Kawasaki disease groups than in the respective healthy controls; Coprococcus was low in the IgAN group but high in the IgA vasculitis group. Fusicatenibacter was lower in both the Kawasaki disease and IgA vasculitis groups than in their respective healthy controls, and Intestinibacter was low in the Kawasaki disease group, but its expression was high in the IgA vasculitis group. Conclusion The dysbiosis of the intestinal flora in the three groups of patients with IgAN, Kawasaki disease and IgA vasculitis, its effect on the immunity of the organism and its role in the development of each disease group remain unclear, and the presence of their common differential flora may further provide new ideas for the association of the pathogenesis of the three diseases.
Collapse
Affiliation(s)
- Xueli Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ru Fan
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaheng Li
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Duan
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China,*Correspondence: Yafeng Li,
| |
Collapse
|