1
|
Sodhi K, Chanchalani G, Tyagi N. Current role of biomarkers in the initiation and weaning of kidney replacement therapy in acute kidney injury. World J Nephrol 2025; 14:99802. [PMID: 40134642 PMCID: PMC11755245 DOI: 10.5527/wjn.v14.i1.99802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 01/20/2025] Open
Abstract
The occurrence of acute kidney injury (AKI) in critically ill patients is often associated with increased morbidity and mortality rates. Despite extensive research, a consensus is yet to be arrived, especially regarding the optimal timing and indications for initiation of kidney replacement therapy (KRT) for critically ill patients. There is no clear guidance available on the timing of weaning from KRT. More recently, various biomarkers have produced promising prognostic prediction in such patients, regarding the need for KRT and its termination. Most of these biomarkers are indicative of kidney damage and stress, rather than recovery. However, large-scale validation studies are required to guide the cutoff values of these biomarkers among different patient cohorts so as to identify the optimum timing for KRT. This article reviews the kidney biomarkers in detail and summarizes the individual roles of biomarkers in the decision-making process for initiation and termination of the KRT among critically ill AKI patients and the supportive literature.
Collapse
Affiliation(s)
- Kanwalpreet Sodhi
- Department of Critical Care, Deep Hospital, Ludhiana 141002, Punjab, India
| | - Gunjan Chanchalani
- Department of Critical Care Medicine, Karamshibhai Jethabhai Somaiya Hospital and Research Centre, Mumbai 400022, India
| | - Niraj Tyagi
- Department of Critical Care Medicine, Sir Ganga Ram Hospital, New Delhi 110060, Delhi, India
| |
Collapse
|
2
|
Lee H, Liu KH, Yang YH, Liao JD, Lin BS, Wu ZZ, Chang AC, Tseng CC, Wang MC, Tsai YS. Advances in uremic toxin detection and monitoring in the management of chronic kidney disease progression to end-stage renal disease. Analyst 2024; 149:2784-2795. [PMID: 38647233 DOI: 10.1039/d4an00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Patients with end-stage kidney disease (ESKD) rely on dialysis to remove toxins and stay alive. However, hemodialysis alone is insufficient to completely remove all/major uremic toxins, resulting in the accumulation of specific toxins over time. The complexity of uremic toxins and their varying clearance rates across different dialysis modalities poses significant challenges, and innovative approaches such as microfluidics, biomarker discovery, and point-of-care testing are being investigated. This review explores recent advances in the qualitative and quantitative analysis of uremic toxins and highlights the use of innovative methods, particularly label-mediated and label-free surface-enhanced Raman spectroscopy, primarily for qualitative detection. The ability to analyze uremic toxins can optimize hemodialysis settings for more efficient toxin removal. Integration of multiple omics disciplines will also help identify biomarkers and understand the pathogenesis of ESKD, provide deeper understanding of uremic toxin profiling, and offer insights for improving hemodialysis programs. This review also highlights the importance of early detection and improved understanding of chronic kidney disease to improve patient outcomes.
Collapse
Affiliation(s)
- Han Lee
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Kuan-Hung Liu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Yu-Hsuan Yang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Jiunn-Der Liao
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Bo-Shen Lin
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Zheng-Zhe Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Alice Chinghsuan Chang
- Center for Measurement Standards, Industrial Technology Research Institute, No. 321, Kuang Fu Road, Section 2, Hsinchu 300, Taiwan.
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Yau-Sheng Tsai
- Center for Clinical Medicine Research, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| |
Collapse
|
3
|
Bufkin KB, Karim ZA, Silva J. Review of the limitations of current biomarkers in acute kidney injury clinical practices. SAGE Open Med 2024; 12:20503121241228446. [PMID: 38322582 PMCID: PMC10846001 DOI: 10.1177/20503121241228446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Acute kidney injury is a prevalent disease in hospitalized patients and is continuously increasing worldwide. Various efforts have been made to define and classify acute kidney injury to understand the progression of this disease. Furthermore, deviations from structure and kidney function and the current diagnostic guidelines are not adequately placed due to baseline serum creatinine values, which are rarely known and estimated based on glomerular function rate, resulting in misclassification of acute kidney injury staging. Hence, the current guidelines are still developing to improve and understand the clinical implications of risk factors and earlier predictive biomarkers of acute kidney injury. Yet, studies have indicated disadvantages and limitations with the current acute kidney injury biomarkers, including lack of sensitivity and specificity. Therefore, the present narrative review brings together the most current evidenced-based practice and literature associated with the limitations of the gold standard for acute kidney injury diagnoses, the need for novel acute kidney injury biomarkers, and the process for biomarkers to be qualified for diagnostic use under the following sections and themes. The introduction section situates the anatomy and normal and abnormal kidney functions related to acute kidney injury disorders. Guidelines in providing acute kidney injury definitions and classification are then considered, followed by a discussion of the disadvantages of standard markers used to diagnose acute kidney injury. Characteristics of an ideal acute kidney injury biomarker are discussed concerning sensitivity, specificity, and anatomic location of injury. A particular focus on the role and function of emerging biomarkers is discussed in relation to their applications and significance to the prognosis and severity of acute kidney injury. Findings show emerging markers are early indicators of acute kidney injury prediction in different clinical settings. Finally, the process required for a biomarker to be applied for diagnostic use is explained.
Collapse
Affiliation(s)
- Kendra B Bufkin
- Department of Interdisciplinary Health Science, College of Allied Health Science, Augusta University, Augusta, GA, USA
| | - Zubair A Karim
- Department of Interdisciplinary Health Science, College of Allied Health Science, Augusta University, Augusta, GA, USA
| | - Jeane Silva
- Department of Health Management, Economics and Policy, Augusta University, Augusta, GA, USA
| |
Collapse
|
4
|
Xu C, Wu F, Du L, Dong Y, Lin S. Significant association between high neutrophil-lymphocyte ratio and poor prognosis in patients with hepatocellular carcinoma: a systematic review and meta-analysis. Front Immunol 2023; 14:1211399. [PMID: 37809083 PMCID: PMC10551132 DOI: 10.3389/fimmu.2023.1211399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Whether neutrophil-lymphocyte ratio (NLR) is an applicative predictor of poor prognosis in patients with hepatocellular carcinoma (HCC) remains controversial. In response to the current conflicting data, this meta-analysis was conducted to gain a comprehensive and systematic understanding of prognostic value of NLR in HCC. Methods Several English databases, including PubMed, EMBASE, and the Cochrane Library, with an update date of February 25, 2023, were systematically searched. We set the inclusion criteria to include randomized controlled trial (RCT) studies that reported the prognostic value of serum NLR levels in patients with HCC receiving treatment. Both the combined ratio (OR) and the diagnosis ratio (DOR) were used to assess the prognostic performance of NLR. Additionally, we completed the risk of bias assessment by Cochrane Risk of Bias Assessment Tool. Results This meta-analysis ultimately included 16 studies with a total of 4654 patients with HCC. The results showed that high baseline NLR was significantly associated with poor prognosis or recurrence of HCC. The sensitivity of 0.67 (95% confidence interval [CI]. 0.59-0.73); specificity of 0.723 (95% CI: 0.64-0.78) and DOR of 5.0 (95% CI: 4.0-7.0) were pooled estimated from patient-based analyses. Subsequently, the combined positive likelihood ratio (PLR) and negative likelihood ratio (NLHR) were calculated with the results of 2.4 (95% CI: 1.9-3.0) and 0.46 (95% CI: 0.39-0.56), respectively. In addition, area under the curve (AUC) of the summary receiver operating characteristic (SROC) reflecting prognostic accuracy was calculated to be 0.75 (95% CI: 0.71-0.78). The results of subgroup analysis suggested that high NLR was an effective predictive factor of poor prognosis in HCC in mainland China as well as in the northern region. Conclusion Our findings suggest that high baseline NLR is an excellent predictor of poor prognosis or relapse in patients with HCC, especially those from high-incidence East Asian populations. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier CRD42023440640.
Collapse
Affiliation(s)
- Chunhua Xu
- Shulan International Medical School, Zhejiang Shuren University, Hangzhou, China
| | - Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lailing Du
- Shulan International Medical School, Zhejiang Shuren University, Hangzhou, China
| | - Yeping Dong
- Shulan International Medical School, Zhejiang Shuren University, Hangzhou, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|